
The debdelta suite
Andrea C. G. Mennucci

Copyright © 2006-2011

debdelta is an application suite designed to compute changes between Debian packages. These
changes (that we will call ’deltas’) are similar to the output of the "diff" program in that they
may be used to store and transmit only the changes between Debian packages. This suite
contains ’debdelta-upgrade’, that downloads deltas and use them to create all Debian packages
needed for an ’apt-get upgrade’.

1. Overview

The debdelta application suite is really composed of different applications.

1.1. debdelta

debdelta computes the delta, that is, a file that encodes the difference between two Debian packages.
Example:

$ a=/var/cache/apt/archives
$ debdelta -v $a/emacs-snapshot-common_1%3a20060512-1_all.deb \
$a/emacs-snapshot-common_1%3a20060518-1_all.deb /tmp/emacs.debdelta

the result is: deb delta is 12.5% of deb ; that is, 15452kB would be saved

1.2. debpatch

debpatch can use the delta file and a copy of the old Debian package to recreate the new Debian
package. (This process is called "applying the delta file"). If the old Debian package is not available, but
is installed in the host, it can use the installed data; in this case, ’/’ is used in lieu of the old .deb.

Example:

$ debpatch -A /tmp/emacs.debdelta / /tmp/emacs.deb

1

The debdelta suite

1.3. debdeltas

debdeltas can be used to generate deltas for many debs at once. It will generate delta files with names
such as package_old-version_new-version_architecture.debdelta. If the delta exceeds
~70% of the deb, ’debdeltas’ will delete it and leave a stamp of the form
package_old-version_new-version_architecture.debdelta-too-big. Example usages are
in the man page; see also Section 3.9.

1.4. debdelta-upgrade

debdelta-upgrade will download necessary deltas and apply them to create debs for a successive
apt-get upgrade. The deltas are available for upgrades in ’stable’ , ’stable-security’ , ’testing’, ’unstable’
and ’experimental’, for i386 and amd64. Example usage:

apt-get update && debdelta-upgrade && apt-get upgrade

If run by a non-root user, debs are saved in /tmp/archives : do not forget to move them in
/var/cache/apt/archives

debdelta-upgrade will also download .debs for which no delta is available (this is done in parallel to
patching, to maximize speed). See the explanation of "debdelta-upgrade --deb-policy" in the man page
for more informations and customization on which debs get downloaded.

More informations are in next sections.

1.5. debforensic

There is also another bunch of code (that though was never distributed.... it is available in the GIT repo).
. debforensics creates and uses sqlite databases containing information regarding debian binary
packages. debforensics --add will scan debian packages and add the list of files (and SHA1 hashes of
them) to the database. debforensics --scan will check a file against multiple databases, to see if that file
is part of any package. debforensics --forensic will scan a filesystem and list files that are part of a
package, and files that are not (or are missplaced, or have strange permissions....).

If debdelta-upgrade fails to apply a delta, and ’-d’ is passed, then a debug file is generated, and then
debforensic may be used to understand what went wrong (theoretically).

Important: Beware: a full database for main/amd64 is ~350MBs, without indexes. So in practice
currently I cannot keep a database in my host.

2

The debdelta suite

2. a delta

The delta is ’ar’ archive (see ’man ar’). The delta contains ’info’, some data members (named by
numbers), a script named ’patch.sh.xxx’, and optional gpg signatures. The script recreates the new deb.
See do_delta_() in the python code for more details.

2.1. the info in a delta

a delta first ’ar’ member is always named ’info’, and is a text file containing some keywords and
informations regarding the delta itself. [TODO add details]

2.2. how to apply a delta

TODO WRITEME. You may look into /usr/share/debdelta/debpatch.sh to understand the
basics.

3. debdelta-upgrade service

In June 2006 I set up a delta-upgrading framework, so that people may upgrade their Debian box using
debdelta-upgrade (that downloads package ’deltas’). This section is an introduction to the framework
that is behind ’debdelta-upgrade’, and is also used by ’cupt’. In the following, I will simplify (in places,
quite a lot).

3.1. The framework

The framework is so organized: I keep up some servers where I use the program ’debdeltas’ to create all
the deltas; whereas endusers use the client ’debdelta-upgrade’ to download the deltas and apply them to
produce the debs needed to upgrade their boxes. In my server, I mirror some repositories, and then I
invoke ’debdeltas’ to make the deltas between them. I use the scripts
/usr/share/debdelta/debmirror-delta-security and
/usr/share/debdelta/debmirror-marshal-deltas for this. This generates any delta that may be
needed for upgrades in squeeze,squeeze-security,wheezy,sid,experimental, for architectures i386 and
amd64 (as of Mar 2011); the generated repository of deltas is more or less 10GB.

3

The debdelta suite

3.2. The goals

There are two ultimate goals in designing this framework:

1. SMALL) reduce the size of downloads (fit for people that pay-by-megabyte);

2. FAST) speed up the upgrade.

The two goals are unfortunately only marginally compatible. An example: bsdiff can produce very small
deltas, but is quite slow (in particular with very large files); so currently (2009 on) I use ’xdelta3’ as the
backend diffing tool for ’debdeltas’ in my server. Another example is in debs that contain archives (.gz, ,
tar.gz etc etc): I have methods and code to peek inside them, so the delta become smaller, but the
applying gets slower.

3.3. The repository structure

The repository of deltas is just a HTTP archive; it is similar to the pool of packages; that is, if
foobar_1_all.deb is stored in pool/main/f/foobar/ in the repository of debs, then the delta to
upgrade it will be stored in pool/main/f/foobar/foobar_1_2_all.debdelta in the repository of
deltas. Contrary to the repository of debs, a repository of deltas has no indexes, see Section 3.7.2. The
delta repository is in http://debdeltas.debian.net/debian-deltas.

3.4. The repository creation

Suppose that the unstable archive, on 1st Mar, contains foobar_1_all.deb (and it is in
pool/main/f/foobar/) ; then on 2nd Mar, foobar_2_all.deb is uploaded; but this has a flaw (e.g.
FTBFS) and so on 3rd Mar foobar_3_all.deb is uploaded. On 2nd Mar, the delta server generates
pool/main/f/foobar/foobar_1_2_all.debdelta On 3rd Mar, the server generates both
pool/main/f/foobar/foobar_1_3_all.debdelta

pool/main/f/foobar/foobar_2_3_all.debdelta. So, if the end-user Ann upgrades the system
on both 2nd and 3rd Mar, then she uses both foobar_1_2_all.debdelta (on 2nd) and
foobar_2_3_all.debdelta (on 3rd Mar). If the end-user Boe has not upgraded the system on 2nd
Mar, , and he upgrades on 3rd Mar, then on 3rd Mar he uses foobar_1_3_all.debdelta.

3.5. size limit

Note that currently the server rejects deltas that exceed 70% of the deb size: indeed the size gain would
be too small, and the time would be wasted, if you sum the time to download the delta and the time to
apply it (OK, these are run as much as possible in parallel, yet).

Also, the server does not generate delta for packages that are smaller than 10KB.

4

The debdelta suite

3.6. /etc/debdelta/sources.conf

Consider a package that is currently installed. It is characterized by name installed_version architecture
(unfortunately there is no way to tell from which archive it came from, but this does not seem to be a
problem currently) Suppose now that a newer version is available somewhere in an archive, and that the
user wishes to upgrade to that version. The archive Release file contain these info: “Origin , Label , Site,
Archive”. (Note that Archive is called Suite in the Release file). Example for the security archive:

Origin=Debian
Label=Debian-Security
Archive=stable
Site=security.debian.org

The file /etc/debdelta/sources.conf , given the above info, determines the host that should
contain the delta for upgrading the package. This information is called "delta_uri" in that file. The
complete URL for the delta is built adding to the delta_uri a directory path that mimicks the "pool"
structure used in Debian archives, and appending to it a filename of the form
name_oldversion_newversion_architecture.debdelta. All this is implemented in the example
script contrib/findurl.py . If the delta is not available at that URL, and
name_oldversion_newversion_architecture.debdelta-too-big is available, then the delta is
too big to be useful. If neither is present, then, either the delta has not yet been generated, or it will never
be generated... but this is difficult to know.

3.7. indexes

3.7.1. indexes of debs in APT

Let’s start examining the situation for debs and APT. Using indexes for debs is a no-brainer decision:
indeed, the client (i.e. the end user) does not know the list of available debs in the server, and, even
knowing the current list, cannot foresee the future changes. So indexes provide needed informations: the
packages’ descriptions, versions, dependencies, etc etc; these info are used by apt and the other
frontends.

3.7.2. no indexes of deltas in debdelta

If you then think of deltas, you realize that all requirements above fall. Firstly there is no description and
no dependencies for deltas. 1 Of course ’debdelta-upgrade’ needs some information to determine if a
delta exists, and to download it; but these information are already available:

the name of the package P
the old version O
the new version N
the architecture A

5

The debdelta suite

Once these are known, the URL of the file F can be algorithmically determined as
URI/POOL/P_O_N_A.debdelta where URI is determined from /etc/debdelta/sources.conf and
POOL is the directory in the pool of the package P . This algorithm is also implemented (quite verbosely)
in contrib/findurl.py in the sources of debdelta. This is the reason why currently there is no "index of
deltas", and nonetheless ’debdelta-upgrade’ works fine (and "cupt" as well). Adding an index of file
would only increase downloads (time and size) and increase disk usage; with negligeable benefit, if any.

3.8. no incremental deltas

Let me add another point that may be unclear. There are no incremental deltas (and IMHO never will be).

3.8.1. What "incremental" would be, and why it is not

Please recall Section 3.4. What does not happen currently is what follows: on 3rd Mar , Boe decides to
upgrade, and invokes ’debdelta-upgrade’; then ’debdelta-upgrade’ finds foobar_1_2_all.debdelta
and foobar_2_3_all.debdelta , it uses the foremost to generate foobar_2_all.deb, and in turn it
uses this and the second delta to generate foobar_3_all.deb . This is not implemented, and it will
not, for the following reasons.

• The delta size is, on average, 40% of the size of the deb (and this is getting worse, for different
reasons, see Section 5.2); so two deltas are 80% of the target deb, and this too much.

• It takes time to apply a delta; applying two deltas to produce one deb takes too much time.

• The server does generate the direct delta foobar_1_3_all.debdelta :-) so why making things
complex when they are easy? :-)

• Note also that incremental deltas would need some index system to be implemented... indeed, Boe
would have no way to know on 3rd Mar that the intermediate version of foobar between "1" and "3" is
"2"; but since incremental deltas do not exist, then there is no need to have indexes).

3.9. Repository howto

There are (at least) two ways two manage a repository, and run a server that creates the deltas

3.9.1. debmirror --debmarshal

The first way is what I currently use. It is implemented in the script
/usr/share/debdelta/debmirror-marshal-deltas (a simpler version, much primitive but more
readable , is /usr/share/debdelta/debmirror-delta-security) Currently I use the complex
script that creates deltas for amd64 and i386, and for lenny squeeze sid experimental ; and the simpler

6

The debdelta suite

one for lenny-security. Let me start outlining how the simple script generate deltas . It is a 3 steps process.
Lets say that $secdebmir is the directory containg the mirror of the repository security.debian.org.

1. --- 1st step
#make copy of current stable-security lists of packages
olddists=${TMPDIR:-/tmp}/oldsecdists-‘date +’%F_%H-%M-%S’‘
mkdir $olddists
cp -a $secdebmir/dists $olddists

2. --- 2nd step call ’debmirror’ to update the mirror ; note that I apply a patch to debmirror so that old
debs are not deleted , but moved to a /old_deb directory

3. --- 3rd step call ’debdeltas’ to generate deltas , from the state of packages in $olddists to the current
state in $secdebmir , and also wrt what is in stable. Note that, for any package that was deleted from
the archive, then ’debdeltas’ will go fishing for it inside /old_deb .

The more complex script uses the new debmirror --debmarshal so it keeps 40 old snapshots of the deb
archives, and it generates deltas of the current package version (the "new" version) to the versions in
snapshots -10,-20,-30,-40.

3.9.2. hooks and repository of old_debs

I wrote the scheleton for some commands.

debdelta_repo [--add name version arch filename disttoken]

This first one is to be called by the archive management tool (e.g. DAK) when a new package enters in a
part of the archive (lets say, package="foobar" version="2" arch="all" and
filename="pool/main/f/foobar/foobar_2_all.deb" just entered disttoken="testing/main/amd64"). That
command will add that to a delta queue, so appropriate deltas will be generated; this command returns
almost immediately.

debdelta_repo [--delta]

This does create all the deltas.

debdelta_repo [--sos filename]

This will be called by DAK when (before) it does delete a package from the archive; this command will
save that old deb somewhere (indeed it may be needed to generate deltas sometimes in the future). (It
will be up to some piece of debdelta_repo code to manage the repository of old debs, and delete excess
copies).

TODO that scheleton does not handle ’security’, where some old versions of the packages are in a
different DISTTOKEN

7

The debdelta suite

4. Goals, tricks, ideas and issues

4.1. exact patching

When debpatch or debdelta-upgrade recreates a .deb, it will be identical to the desired one (so it may
be possible to check it using the security features in APT (http://wiki.debian.org/SecureApt) 2). See
though Section 4.5.

4.2. exact recompression

Suppose a .deb has inside a huge file /usr/share/doc/foobar/document.info.gz and this starts with a RCS
tag ... then each time it is released, the file will be different even though just few bytes were changed.
Another examples are manpages that start with the header containing the version of the command. So , to
get good compression of the difference, I had to be able to gunzip those files, diff them, and gzip back
them exactly identical (but possibly for headers 3) For this reason, I studied gzip formats, and I wrote in
debdelta some python code that does the trick (90% of the times...). 4

4.3. speed

4.3.1. some (old) numbers

Warning: this section is referred to experiments done in 2006, and the backend for delta encoding was
’xdelta’. On a desktop with CPU Athlon64 3000 and a average hard disk,

$ debdelta mozilla-browser_1.7.8-1sarge3_i386.deb \
mozilla-browser_1.7.8-1sarge6_i386.deb /tmp/m-b.debdelta

processes the 10Mb of mozilla-browser in ~11sec, that is a speed of ~900kB per second. Then debpatch
applies the above delta in 16sec, at a speed of ~600kB per second. Numbers drop in a old PC, or in a
notebook (like mine, that has a Athlon 1600MHz and slow disks), where data are chewed at ~200kB per
second. Still, since I have a ADSL line that downloads at max 80kB per second, I have a benefit
downloading deltas. In a theoretical example, indeed, to download a 80MB package, it would take
1000seconds; whereas to download a delta that is 20% of 80MB it takes 200seconds, and then 80MB /
(200kB/sec) = 400seconds to apply it, for a total of 600seconds. So I may get a "virtual speed" of 80MB
/ 600sec = 130kB/sec . Note that delta downloading and delta patching is done in parallel: if 4 packages
as above have to be downloaded, then the total time for downloading of full debs would be 4000seconds,
while the time for parallel-download-patch-apply-patch may be as low as 1400seconds.

This is a real example of running ’debdelta-upgrade’ :

Looking for a delta for libc6 from 2.3.6-9 to 2.3.6-11
Looking for a delta for udev from 0.092-2 to 0.093-1

8

The debdelta suite

Patching done, time: 22sec, speed: 204kB/sec, result: libc6_2.3.6-11_i386.deb
Patching done, time: 4sec, speed: 57kB/sec, result: udev_0.093-1_i386.deb
Delta-upgrade download time 28sec speed 21.6k/sec
total time: 53sec; virtual speed: 93.9k/sec.

(Note that the "virtual speed" of 93.9k/sec , while less than the 130kB/sec of the theoretical example
above, is still more than the 80kB that my ADSL line would allow). Of course the above is even better
for people with fast disks and/or slow modems. Actually, an apt delta method may do a smart decision of
how many deltas to download, and in which order, to optimize the result, (given the deltas size, the
packages size, the downloading speed and the patching speed).

4.3.2. speeding up

The problem is that the process of applying a delta to create a new deb is currently slow, even on very
fast machines. One way to overcome is to "parallelize as much as possible". The best strategy that I can
imagine is to keep both the CPU, the hard disk, and the Internet connection, always maxed up. This is
why ’debdelta-upgrade’ has two threads, the "downloading thread" and the "patching thread". The
downloading thread downloads deltas (ordered by increasing size), and as soon as they are downloaded,
it queues them to be applied in the "patching thread"; whereas as soon as all available deltas are
downloaded it starts downloading some debs, and goes on for as long as the deltas are being applied in
the "patching thread". Summarizing, the downloading thread keeps Internet busy while the patching
thread keeps the CPU and HDD busy.

Another speedup strategy is embedded inside the deltas themselves: since bsdiff is a memory hog, when
the backend is bsdiff, I have to divide the data in chunks; this may lower the compression ratio, but the
good point is that the HDD accesses and the calls to bsdiff can run "in parallel". With newer xdelta3,
xdelta3 can read the original data from a pipe, so the data are not divided in chunks, but rather
continously piped into xdelta3; so xdelta3 runs at the same time as when the data are read from HDD.

4.3.3. the 10kb trick

currently, roughly half of the generated deltas5 are less than 10KB. debdelta-upgrade downloads deltas
in two passes,

1. in the first pass it tries to download the first 10KB of a delta; if it gets a complete delta, it immediatly
pipes it in the "patching thread queue", otherwise if it gets only a partial download, it adds it to the
download queue; if it gets HTTP404, it possibly checks for the "toobig" timestamp, and it possibly
warns the user.

2. in the second pass, it downloads the rest of the deltas, and queues them for patching

Why this complex method? because the first 10KBs of a delta contain the info, and those may be used to
actually decide not to download the rest of the delta (if a TODO predictor decides that it is not
worthwhile...Section 4.3.4).

9

The debdelta suite

4.3.4. the choice, the predictor

Which deltas should be downloaded, VS which debs? Currently there is a rule-of-thumb: the server
immediately deletes any delta that exceeds 70% of the original deb , and it replaces it with an empty file
ending in ".debdelta-too-big". In such cases, "debdelta-upgrade" will download the deb instead. See the
explanation of "debdelta-upgrade --deb-policy" in the man page for more info and customization on
which debs get downloaded.

Some time ago I tried to do devise a better way to understand when to download a delta w.r.t. a deb. The
code is in the "Predictor" class but I could not reliably predict the final speed of patching, so currently
it is not used.

4.3.5. State of the art

All in all, I still cannot obtain high speeds: so people that have a fast ADSL Internet connection usually
are better downloading all the debs, and ignoring "debdelta-upgrade" alltogether. Anyway, the best way
to know is to try "debdelta-upgrade -v" and read the final statistics. See Section 4.7 and Section 4.8 for
recent developments.

4.4. better deb compression is a worse delta

’xdelta3’ can reconstruct data at high speed: on nowadays processors, it can process up to 2MB per
second; but, when applying a delta, ’xdelta3’ works on uncompressed data. So if the data is then
compressed at a ratio 1/3, then the resulting speed on compressed data is 700KB/sec. Moreover, time is
needed to actually compress the data.

In recent years, ’dpkg’ has transitioned from ’data.tar.gz’ to ’data.tar.bz2’ to ’data.tar.lzma’; each method
is better at compressing, but is also slower than the previous one; since it is better at compressing, it also
defeats the ability of ’debdelta’ to produce small deltas (wrt the original deb, of course), and indeed
statistics show that deltas are getting larger; since it is slower, it slows down the applying of deltas as
well.

4.5. long time recovery

As aforementioned, deltas can rebuild the deb identically to the byte. But the patch.sh script calls the
standard tools ’tail’,’head’,’zgip’,’bzip2’,’lzma’, etc etc to rebuild a delta; so if the argument calling or
output of any of those tools changes, than a delta may become unusable. As long as deltas are used for
the debdelta-upgrade service, this is no big deal: if such a tool changes, then we can adjust the deltas to
it, and there is just some days disruption of the service 6 (and people will download debs instead of deltas
.... as we used to).

10

The debdelta suite

If anybody wants instead to use debdelta to archive debs for long time, (as the archive.debian.org service
was doing), then we should make sure that , at any moment in future, deltas can be applied. A possible
solution would be that deltas should contain, in the info files, the versions of all tools that are needed for
applying. A second solution is that debdelta should keep a standard set of those tools inside the package.

4.6. streaming

Let me summarize. When ’debdelta-upgrade’ (or ’debpatch’) recreates a deb, one step is reassembling
the data.tar part inside it; this part moreover is compressed (gzip, bzip2 or lately lzma). This
’reassembling and compressing’ takes time (both for CPU and for HD), and is moreover quite useless,
since, in short time, ’apt’ will call ’dpkg -i’ that decompresses and reopens the data.tar in the deb.

It is then reasonable to collapse this two parts, and this would possibly speed up the upgrade a bit. A first
step is ’--format=unzipped’ Section 4.7 , a next step may be ’--format=preunpacked’ Section 4.8.

4.7. --format=unzipped

The recently introduced new --format=unzipped may speed up package upgrades. If you call
’debdelta-upgrade’ with the option ’--format=unzipped’ , then in the recreated deb the data.tar part will
not be compressed. This may speedup the ’debdelta-upgrade’ + ’apt-get upgrade’ process. Indeed,
writing to hard disk is fast (let’s say 5MB/sec, but usually much more); whereas compressing random
data with ’bzip2 -9’ or ’lzma -9’ is much slower (let’s say 2.0MB/sec and 1.5 MB/sec) ; and moreover
the compressed data is then decompressed by dpkg when installing; so avoiding the
compress/decompress should be a win/win (unless you run out of disk space...). Indeed I see that the
creation of deltas is much faster; but I still do not have enough data collected....

4.8. --format=preunpacked

Here is another idea. When ’debdelta-upgrade’ is called in upgrading a package ’foobar’ it currently
creates ’foobar_2.deb’. By an appropriate cmdline switch ’--format=preunpacked’, instead of creating a
’foobar_2.deb’ , it directly saves all of its file to the filesystem, and it adds an extension to all the file
names, making sure that no file name conflicts (=overwrite) with a preexisting file on the filesystem ;
then it creates a file ’foobar_2.deb_preunpacked’ , that is a deb package were ’data.tar.xxx’ is replaced
with ’data_list’, just a text file specifying the contents of ’data.tar.xxx’ and where regular files were
temporarily unpacked.

Note that the above idea overlaps a lot with the SummerOfCode2010 StreamingPackageInstall
(http://wiki.debian.org/SummerOfCode2010/StreamingPackageInstall)

debdelta-upgrade --format=preunpacked is now implemented as a proof-of-concept (it does not really
write temporary files to HD yet). The format of data_list is

11

The debdelta suite

Files:
TYPE MODE USER GROUP MTIME
NAME_FILE_WAS_UNPACKED_TO (if regular file)
ORIGINAL_FILENAME
LINK_NAME (if link)

[repeat]

Example of data_list

Files:
d 0755 root root 1304626623

./etc

- 0644 root root 1304626594
/./etc/gnashrc_1956_debdelta_preunpacked
./etc/gnashrc
l 0777 root root 1304626629

./usr/share/man/man1/gtk-gnash.1.gz
gnash.1.gz

PROS: (1) may be faster; (2) if you need to upgrade a 100MB package, you do not need to save both the
deb and (while ’dpkg --unpack’) the whole new deb data : so there is less risk of running our of disk
space.

CONS: (1) you cannot install that "preunpacked deb" twice (so dpkg should probably remove it once it
has installed it); (2) you cannot move it to another host; (3) when "apt-get clean", all temporary files have
to be removed as well.

So it may be a good idea to use ".deb_preunpacked" as extension for them. And I would recommend
using ’--format=unzipped’ for essential packages such as the kernel.

If you like the idea, someone should help in changing ’dpkg’ so that it would be able to install starting
from ’foobar_2.deb_preunpacked’. And change APT so that it would interact with ’debdelta’ to create
the ’foobar_2.deb_unpacked’ files, and pass them to dpkg (and clean them properly).

12

The debdelta suite

5. Todo

5.1. todo list

1. Prepare an APT method so that ’apt-get upgrade’ would actually use deltas. Some code is already
written. See also 2011 Google Summer of Code.

2. As in Section 4.3.4. It would be nice if debdelta-upgrade would actually choose if

• download a delta and use it to create the .deb

• download the deb

depending on which one would be faster. Unfortunately, this decision must depend on a good model
to predict the speed of patching... and this I still cannot achieve.

3. in debdelta-upgrade, have as many "patching thread" as there are cores

4. upgrade debdelta-upgrade to newer libapt

5. support multiarch

6. collect data, benchmark! (some debdelta behaviours are coded in magic numbers that I got from
thumb reasoning on small datasets)

7. support long time exact recovery Section 4.5: embed a copy of gzip, libzip, bzip2 and lzma in
debdelta??

5.2. things are getting worse

W.r.t. to when I started deploying debdelta, things got worse, for two reasons,

1. one problem is Section 4.4

2. delta backends are bad at compressing a binary that was compiled from the same source but with twi
different compilers; see in particular the Google Courgette project
(http://dev.chromium.org/developers/design-documents/software-updates-courgette), and compare it
with the problems I encountered lately when Debian switched from GCC 4.4 to 4.5,
(http://debdelta.debian.net/run/tests/debs-newer-gcc/bibledit/) when it happened that the binaries
were so different that the compression of the new binary with LZMA would be smaller than the
BSDIFF of the old and the new binary (!!). Unfortunately it seems that Google Courgette was hit
with a patent infringment
(http://www.h-online.com/open/news/item/Patent-action-over-Google-s-Courgette-845028.html)

so we should study how to reduce the size of deltas, and/or making them faster (possibly implementing
lzma in xdelta3; or automatically choosing ’bsdiff’ vs ’xdelta3’ depending on the situation).

Notes
1. deltas have a "info" section, but that is, as to say, standalone

13

The debdelta suite

2. note though that debdelta-upgrade saves the recontructed debs in /var/cache/apt/archives,
and APT does not check them there, AFAICT

3. the re-gzipped files are identical but for headers, (indeed gzip headers contain sometimes a
timestamp); but this is not a problem since the reconstructed gzipeed file is then piped again into
’xdelta3’ or ’bsdiff’ to rebuild the ’data.tar’, so the header is fixed at that stage

4. This is implemented in the python routine delta_gzipped_files.

5. that is, discarding those that are more than 70% of the corresponding deb

6. this actually already happened some years ago, with libzip

14

	1. Overview
	1.1. debdelta
	1.2. debpatch
	1.3. debdeltas
	1.4. debdeltaupgrade
	1.5. debforensic

	2. a delta
	2.1. the info in a delta
	2.2. how to apply a delta

	3. debdeltaupgrade service
	3.1. The framework
	3.2. The goals
	3.3. The repository structure
	3.4. The repository creation
	3.5. size limit
	3.6. /etc/debdelta/sources.conf
	3.7. indexes
	3.7.1. indexes of debs in APT
	3.7.2. no indexes of deltas in debdelta

	3.8. no incremental deltas
	3.8.1. What "incremental" would be, and why it is not

	3.9. Repository howto
	3.9.1. debmirror debmarshal
	3.9.2. hooks and repository of olddebs

	4. Goals, tricks, ideas and issues
	4.1. exact patching
	4.2. exact recompression
	4.3. speed
	4.3.1. some (old) numbers
	4.3.2. speeding up
	4.3.3. the 10kb trick
	4.3.4. the choice, the predictor
	4.3.5. State of the art

	4.4. better deb compression is a worse delta
	4.5. long time recovery
	4.6. streaming
	4.7. format=unzipped
	4.8. format=preunpacked

	5. Todo
	5.1. todo list
	5.2. things are getting worse

