Actual source code: feast.c
slepc-3.19.2 2023-09-05
1: /*
2: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3: SLEPc - Scalable Library for Eigenvalue Problem Computations
4: Copyright (c) 2002-, Universitat Politecnica de Valencia, Spain
6: This file is part of SLEPc.
7: SLEPc is distributed under a 2-clause BSD license (see LICENSE).
8: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9: */
10: /*
11: This file implements a wrapper to the FEAST solver in MKL
12: */
14: #include <petscsys.h>
15: #if defined(PETSC_HAVE_MKL_INTEL_ILP64)
16: #define MKL_ILP64
17: #endif
18: #include <mkl.h>
19: #include <slepc/private/epsimpl.h>
21: #if defined(PETSC_USE_COMPLEX)
22: # if defined(PETSC_USE_REAL_SINGLE)
23: # define FEAST_RCI cfeast_hrci
24: # define SCALAR_CAST (MKL_Complex8*)
25: # else
26: # define FEAST_RCI zfeast_hrci
27: # define SCALAR_CAST (MKL_Complex16*)
28: # endif
29: #else
30: # if defined(PETSC_USE_REAL_SINGLE)
31: # define FEAST_RCI sfeast_srci
32: # else
33: # define FEAST_RCI dfeast_srci
34: # endif
35: # define SCALAR_CAST
36: #endif
38: typedef struct {
39: PetscInt npoints; /* number of contour points */
40: PetscScalar *work1,*Aq,*Bq; /* workspace */
41: #if defined(PETSC_USE_REAL_SINGLE)
42: MKL_Complex8 *work2;
43: #else
44: MKL_Complex16 *work2;
45: #endif
46: } EPS_FEAST;
48: PetscErrorCode EPSSetUp_FEAST(EPS eps)
49: {
50: PetscInt ncv;
51: EPS_FEAST *ctx = (EPS_FEAST*)eps->data;
52: PetscMPIInt size;
54: PetscFunctionBegin;
55: PetscCallMPI(MPI_Comm_size(PetscObjectComm((PetscObject)eps),&size));
56: PetscCheck(size==1,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"The FEAST interface is supported for sequential runs only");
57: EPSCheckHermitianDefinite(eps);
58: EPSCheckSinvertCayley(eps);
59: if (eps->ncv!=PETSC_DEFAULT) {
60: PetscCheck(eps->ncv>=eps->nev+2,PetscObjectComm((PetscObject)eps),PETSC_ERR_ARG_OUTOFRANGE,"The value of ncv must be at least nev+2");
61: } else eps->ncv = PetscMin(PetscMax(20,2*eps->nev+1),eps->n); /* set default value of ncv */
62: if (eps->mpd!=PETSC_DEFAULT) PetscCall(PetscInfo(eps,"Warning: parameter mpd ignored\n"));
63: if (eps->max_it==PETSC_DEFAULT) eps->max_it = 20;
64: if (!eps->which) eps->which = EPS_ALL;
65: PetscCheck(eps->which==EPS_ALL && eps->inta!=eps->intb,PetscObjectComm((PetscObject)eps),PETSC_ERR_SUP,"This solver must be used with a computational interval");
66: EPSCheckUnsupported(eps,EPS_FEATURE_BALANCE | EPS_FEATURE_ARBITRARY | EPS_FEATURE_CONVERGENCE | EPS_FEATURE_STOPPING | EPS_FEATURE_TWOSIDED);
67: EPSCheckIgnored(eps,EPS_FEATURE_EXTRACTION);
69: if (!ctx->npoints) ctx->npoints = 8;
71: ncv = eps->ncv;
72: PetscCall(PetscFree4(ctx->work1,ctx->work2,ctx->Aq,ctx->Bq));
73: PetscCall(PetscMalloc4(eps->nloc*ncv,&ctx->work1,eps->nloc*ncv,&ctx->work2,ncv*ncv,&ctx->Aq,ncv*ncv,&ctx->Bq));
75: PetscCall(EPSAllocateSolution(eps,0));
76: PetscCall(EPSSetWorkVecs(eps,2));
77: PetscFunctionReturn(PETSC_SUCCESS);
78: }
80: PetscErrorCode EPSSolve_FEAST(EPS eps)
81: {
82: EPS_FEAST *ctx = (EPS_FEAST*)eps->data;
83: MKL_INT fpm[128],ijob,n,ncv,nconv,loop,info;
84: PetscReal *evals,epsout=0.0;
85: PetscInt i,k,nmat;
86: PetscScalar *pV,*pz;
87: Vec x,y,w=eps->work[0],z=eps->work[1];
88: Mat A,B;
89: #if defined(PETSC_USE_REAL_SINGLE)
90: MKL_Complex8 Ze;
91: #else
92: MKL_Complex16 Ze;
93: #endif
95: PetscFunctionBegin;
96: ncv = eps->ncv;
97: n = eps->nloc;
99: /* parameters */
100: feastinit(fpm);
101: fpm[0] = (eps->numbermonitors>0)? 1: 0; /* runtime comments */
102: fpm[1] = ctx->npoints; /* contour points */
103: #if !defined(PETSC_USE_REAL_SINGLE)
104: fpm[2] = -PetscLog10Real(eps->tol); /* tolerance for trace */
105: #endif
106: fpm[3] = eps->max_it; /* refinement loops */
107: fpm[5] = 1; /* second stopping criterion */
108: #if defined(PETSC_USE_REAL_SINGLE)
109: fpm[6] = -PetscLog10Real(eps->tol); /* tolerance for trace */
110: #endif
112: PetscCall(PetscMalloc1(eps->ncv,&evals));
113: PetscCall(BVGetArray(eps->V,&pV));
115: ijob = -1; /* first call to reverse communication interface */
116: PetscCall(STGetNumMatrices(eps->st,&nmat));
117: PetscCall(STGetMatrix(eps->st,0,&A));
118: if (nmat>1) PetscCall(STGetMatrix(eps->st,1,&B));
119: else B = NULL;
120: PetscCall(MatCreateVecsEmpty(A,&x,&y));
122: do {
124: FEAST_RCI(&ijob,&n,&Ze,SCALAR_CAST ctx->work1,ctx->work2,SCALAR_CAST ctx->Aq,SCALAR_CAST ctx->Bq,fpm,&epsout,&loop,&eps->inta,&eps->intb,&ncv,evals,SCALAR_CAST pV,&nconv,eps->errest,&info);
126: PetscCheck(ncv==eps->ncv,PetscObjectComm((PetscObject)eps),PETSC_ERR_LIB,"FEAST changed value of ncv to %d",(int)ncv);
127: if (ijob == 10) {
128: /* set new quadrature point */
129: PetscCall(STSetShift(eps->st,Ze.real));
130: } else if (ijob == 20) {
131: /* use same quadrature point and factorization for transpose solve */
132: } else if (ijob == 11 || ijob == 21) {
133: /* linear solve (A-sigma*B)\work2, overwrite work2 */
134: for (k=0;k<ncv;k++) {
135: PetscCall(VecGetArray(z,&pz));
136: #if defined(PETSC_USE_COMPLEX)
137: for (i=0;i<eps->nloc;i++) pz[i] = PetscCMPLX(ctx->work2[eps->nloc*k+i].real,ctx->work2[eps->nloc*k+i].imag);
138: #else
139: for (i=0;i<eps->nloc;i++) pz[i] = ctx->work2[eps->nloc*k+i].real;
140: #endif
141: PetscCall(VecRestoreArray(z,&pz));
142: if (ijob == 11) PetscCall(STMatSolve(eps->st,z,w));
143: else {
144: PetscCall(VecConjugate(z));
145: PetscCall(STMatSolveTranspose(eps->st,z,w));
146: PetscCall(VecConjugate(w));
147: }
148: PetscCall(VecGetArray(w,&pz));
149: #if defined(PETSC_USE_COMPLEX)
150: for (i=0;i<eps->nloc;i++) {
151: ctx->work2[eps->nloc*k+i].real = PetscRealPart(pz[i]);
152: ctx->work2[eps->nloc*k+i].imag = PetscImaginaryPart(pz[i]);
153: }
154: #else
155: for (i=0;i<eps->nloc;i++) ctx->work2[eps->nloc*k+i].real = pz[i];
156: #endif
157: PetscCall(VecRestoreArray(w,&pz));
158: }
159: } else if (ijob == 30 || ijob == 40) {
160: /* multiplication A*V or B*V, result in work1 */
161: for (k=fpm[23]-1;k<fpm[23]+fpm[24]-1;k++) {
162: PetscCall(VecPlaceArray(x,&pV[k*eps->nloc]));
163: PetscCall(VecPlaceArray(y,&ctx->work1[k*eps->nloc]));
164: if (ijob == 30) PetscCall(MatMult(A,x,y));
165: else if (nmat>1) PetscCall(MatMult(B,x,y));
166: else PetscCall(VecCopy(x,y));
167: PetscCall(VecResetArray(x));
168: PetscCall(VecResetArray(y));
169: }
170: } else PetscCheck(ijob==0 || ijob==-2,PetscObjectComm((PetscObject)eps),PETSC_ERR_LIB,"Internal error in FEAST reverse communication interface (ijob=%d)",(int)ijob);
172: } while (ijob);
174: eps->reason = EPS_CONVERGED_TOL;
175: eps->its = loop;
176: eps->nconv = nconv;
177: if (info) {
178: switch (info) {
179: case 1: /* No eigenvalue has been found in the proposed search interval */
180: eps->nconv = 0;
181: break;
182: case 2: /* FEAST did not converge "yet" */
183: eps->reason = EPS_DIVERGED_ITS;
184: break;
185: default:
186: SETERRQ(PetscObjectComm((PetscObject)eps),PETSC_ERR_LIB,"Error reported by FEAST (%d)",(int)info);
187: }
188: }
190: for (i=0;i<eps->nconv;i++) eps->eigr[i] = evals[i];
192: PetscCall(BVRestoreArray(eps->V,&pV));
193: PetscCall(VecDestroy(&x));
194: PetscCall(VecDestroy(&y));
195: PetscCall(PetscFree(evals));
196: PetscFunctionReturn(PETSC_SUCCESS);
197: }
199: PetscErrorCode EPSReset_FEAST(EPS eps)
200: {
201: EPS_FEAST *ctx = (EPS_FEAST*)eps->data;
203: PetscFunctionBegin;
204: PetscCall(PetscFree4(ctx->work1,ctx->work2,ctx->Aq,ctx->Bq));
205: PetscFunctionReturn(PETSC_SUCCESS);
206: }
208: PetscErrorCode EPSDestroy_FEAST(EPS eps)
209: {
210: PetscFunctionBegin;
211: PetscCall(PetscFree(eps->data));
212: PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSFEASTSetNumPoints_C",NULL));
213: PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSFEASTGetNumPoints_C",NULL));
214: PetscFunctionReturn(PETSC_SUCCESS);
215: }
217: PetscErrorCode EPSSetFromOptions_FEAST(EPS eps,PetscOptionItems *PetscOptionsObject)
218: {
219: EPS_FEAST *ctx = (EPS_FEAST*)eps->data;
220: PetscInt n;
221: PetscBool flg;
223: PetscFunctionBegin;
224: PetscOptionsHeadBegin(PetscOptionsObject,"EPS FEAST Options");
226: n = ctx->npoints;
227: PetscCall(PetscOptionsInt("-eps_feast_num_points","Number of contour integration points","EPSFEASTSetNumPoints",n,&n,&flg));
228: if (flg) PetscCall(EPSFEASTSetNumPoints(eps,n));
230: PetscOptionsHeadEnd();
231: PetscFunctionReturn(PETSC_SUCCESS);
232: }
234: PetscErrorCode EPSView_FEAST(EPS eps,PetscViewer viewer)
235: {
236: EPS_FEAST *ctx = (EPS_FEAST*)eps->data;
237: PetscBool isascii;
239: PetscFunctionBegin;
240: PetscCall(PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&isascii));
241: if (isascii) PetscCall(PetscViewerASCIIPrintf(viewer," number of contour integration points=%" PetscInt_FMT "\n",ctx->npoints));
242: PetscFunctionReturn(PETSC_SUCCESS);
243: }
245: PetscErrorCode EPSSetDefaultST_FEAST(EPS eps)
246: {
247: PetscFunctionBegin;
248: if (!((PetscObject)eps->st)->type_name) PetscCall(STSetType(eps->st,STSINVERT));
249: PetscFunctionReturn(PETSC_SUCCESS);
250: }
252: static PetscErrorCode EPSFEASTSetNumPoints_FEAST(EPS eps,PetscInt npoints)
253: {
254: EPS_FEAST *ctx = (EPS_FEAST*)eps->data;
256: PetscFunctionBegin;
257: if (npoints == PETSC_DEFAULT) ctx->npoints = 8;
258: else ctx->npoints = npoints;
259: PetscFunctionReturn(PETSC_SUCCESS);
260: }
262: /*@
263: EPSFEASTSetNumPoints - Sets the number of contour integration points for
264: the FEAST package.
266: Logically Collective
268: Input Parameters:
269: + eps - the eigenproblem solver context
270: - npoints - number of contour integration points
272: Options Database Key:
273: . -eps_feast_num_points - Sets the number of points
275: Level: advanced
277: .seealso: EPSFEASTGetNumPoints()
278: @*/
279: PetscErrorCode EPSFEASTSetNumPoints(EPS eps,PetscInt npoints)
280: {
281: PetscFunctionBegin;
284: PetscTryMethod(eps,"EPSFEASTSetNumPoints_C",(EPS,PetscInt),(eps,npoints));
285: PetscFunctionReturn(PETSC_SUCCESS);
286: }
288: static PetscErrorCode EPSFEASTGetNumPoints_FEAST(EPS eps,PetscInt *npoints)
289: {
290: EPS_FEAST *ctx = (EPS_FEAST*)eps->data;
292: PetscFunctionBegin;
293: *npoints = ctx->npoints;
294: PetscFunctionReturn(PETSC_SUCCESS);
295: }
297: /*@
298: EPSFEASTGetNumPoints - Gets the number of contour integration points for
299: the FEAST package.
301: Not Collective
303: Input Parameter:
304: . eps - the eigenproblem solver context
306: Output Parameter:
307: . npoints - number of contour integration points
309: Level: advanced
311: .seealso: EPSFEASTSetNumPoints()
312: @*/
313: PetscErrorCode EPSFEASTGetNumPoints(EPS eps,PetscInt *npoints)
314: {
315: PetscFunctionBegin;
318: PetscUseMethod(eps,"EPSFEASTGetNumPoints_C",(EPS,PetscInt*),(eps,npoints));
319: PetscFunctionReturn(PETSC_SUCCESS);
320: }
322: SLEPC_EXTERN PetscErrorCode EPSCreate_FEAST(EPS eps)
323: {
324: EPS_FEAST *ctx;
326: PetscFunctionBegin;
327: PetscCall(PetscNew(&ctx));
328: eps->data = (void*)ctx;
330: eps->categ = EPS_CATEGORY_CONTOUR;
332: eps->ops->solve = EPSSolve_FEAST;
333: eps->ops->setup = EPSSetUp_FEAST;
334: eps->ops->setupsort = EPSSetUpSort_Basic;
335: eps->ops->setfromoptions = EPSSetFromOptions_FEAST;
336: eps->ops->destroy = EPSDestroy_FEAST;
337: eps->ops->reset = EPSReset_FEAST;
338: eps->ops->view = EPSView_FEAST;
339: eps->ops->setdefaultst = EPSSetDefaultST_FEAST;
341: PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSFEASTSetNumPoints_C",EPSFEASTSetNumPoints_FEAST));
342: PetscCall(PetscObjectComposeFunction((PetscObject)eps,"EPSFEASTGetNumPoints_C",EPSFEASTGetNumPoints_FEAST));
343: PetscFunctionReturn(PETSC_SUCCESS);
344: }