LLVM OpenMP* Runtime Library
Loading...
Searching...
No Matches
kmp.h
1
2/*
3 * kmp.h -- KPTS runtime header file.
4 */
5
6//===----------------------------------------------------------------------===//
7//
8// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
9// See https://llvm.org/LICENSE.txt for license information.
10// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef KMP_H
15#define KMP_H
16
17#include "kmp_config.h"
18
19/* #define BUILD_PARALLEL_ORDERED 1 */
20
21/* This fix replaces gettimeofday with clock_gettime for better scalability on
22 the Altix. Requires user code to be linked with -lrt. */
23//#define FIX_SGI_CLOCK
24
25/* Defines for OpenMP 3.0 tasking and auto scheduling */
26
27#ifndef KMP_STATIC_STEAL_ENABLED
28#define KMP_STATIC_STEAL_ENABLED 1
29#endif
30#define KMP_WEIGHTED_ITERATIONS_SUPPORTED \
31 (KMP_AFFINITY_SUPPORTED && KMP_STATIC_STEAL_ENABLED && \
32 (KMP_ARCH_X86 || KMP_ARCH_X86_64))
33
34#define TASK_CURRENT_NOT_QUEUED 0
35#define TASK_CURRENT_QUEUED 1
36
37#ifdef BUILD_TIED_TASK_STACK
38#define TASK_STACK_EMPTY 0 // entries when the stack is empty
39#define TASK_STACK_BLOCK_BITS 5 // Used in TASK_STACK_SIZE and TASK_STACK_MASK
40// Number of entries in each task stack array
41#define TASK_STACK_BLOCK_SIZE (1 << TASK_STACK_BLOCK_BITS)
42// Mask for determining index into stack block
43#define TASK_STACK_INDEX_MASK (TASK_STACK_BLOCK_SIZE - 1)
44#endif // BUILD_TIED_TASK_STACK
45
46#define TASK_NOT_PUSHED 1
47#define TASK_SUCCESSFULLY_PUSHED 0
48#define TASK_TIED 1
49#define TASK_UNTIED 0
50#define TASK_EXPLICIT 1
51#define TASK_IMPLICIT 0
52#define TASK_PROXY 1
53#define TASK_FULL 0
54#define TASK_DETACHABLE 1
55#define TASK_UNDETACHABLE 0
56
57#define KMP_CANCEL_THREADS
58#define KMP_THREAD_ATTR
59
60// Android does not have pthread_cancel. Undefine KMP_CANCEL_THREADS if being
61// built on Android
62#if defined(__ANDROID__)
63#undef KMP_CANCEL_THREADS
64#endif
65
66// Some WASI targets (e.g., wasm32-wasi-threads) do not support thread
67// cancellation.
68#if KMP_OS_WASI
69#undef KMP_CANCEL_THREADS
70#endif
71
72#if !KMP_OS_WASI
73#include <signal.h>
74#endif
75#include <stdarg.h>
76#include <stddef.h>
77#include <stdio.h>
78#include <stdlib.h>
79#include <string.h>
80#include <limits>
81#include <type_traits>
82/* include <ctype.h> don't use; problems with /MD on Windows* OS NT due to bad
83 Microsoft library. Some macros provided below to replace these functions */
84#ifndef __ABSOFT_WIN
85#include <sys/types.h>
86#endif
87#include <limits.h>
88#include <time.h>
89
90#include <errno.h>
91
92#include "kmp_os.h"
93
94#include "kmp_safe_c_api.h"
95
96#if KMP_STATS_ENABLED
97class kmp_stats_list;
98#endif
99
100#if KMP_USE_HIER_SCHED
101// Only include hierarchical scheduling if affinity is supported
102#undef KMP_USE_HIER_SCHED
103#define KMP_USE_HIER_SCHED KMP_AFFINITY_SUPPORTED
104#endif
105
106#if KMP_USE_HWLOC && KMP_AFFINITY_SUPPORTED
107#include "hwloc.h"
108#ifndef HWLOC_OBJ_NUMANODE
109#define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
110#endif
111#ifndef HWLOC_OBJ_PACKAGE
112#define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
113#endif
114#endif
115
116#if KMP_ARCH_X86 || KMP_ARCH_X86_64
117#include <xmmintrin.h>
118#endif
119
120// The below has to be defined before including "kmp_barrier.h".
121#define KMP_INTERNAL_MALLOC(sz) malloc(sz)
122#define KMP_INTERNAL_FREE(p) free(p)
123#define KMP_INTERNAL_REALLOC(p, sz) realloc((p), (sz))
124#define KMP_INTERNAL_CALLOC(n, sz) calloc((n), (sz))
125
126#include "kmp_debug.h"
127#include "kmp_lock.h"
128#include "kmp_version.h"
129#include "kmp_barrier.h"
130#if USE_DEBUGGER
131#include "kmp_debugger.h"
132#endif
133#include "kmp_i18n.h"
134
135#define KMP_HANDLE_SIGNALS ((KMP_OS_UNIX && !KMP_OS_WASI) || KMP_OS_WINDOWS)
136
137#include "kmp_wrapper_malloc.h"
138#if KMP_OS_UNIX
139#include <unistd.h>
140#if !defined NSIG && defined _NSIG
141#define NSIG _NSIG
142#endif
143#endif
144
145#if KMP_OS_LINUX
146#pragma weak clock_gettime
147#endif
148
149#if OMPT_SUPPORT
150#include "ompt-internal.h"
151#endif
152
153#if OMPD_SUPPORT
154#include "ompd-specific.h"
155#endif
156
157#ifndef UNLIKELY
158#define UNLIKELY(x) (x)
159#endif
160
161// Affinity format function
162#include "kmp_str.h"
163
164// 0 - no fast memory allocation, alignment: 8-byte on x86, 16-byte on x64.
165// 3 - fast allocation using sync, non-sync free lists of any size, non-self
166// free lists of limited size.
167#ifndef USE_FAST_MEMORY
168#define USE_FAST_MEMORY 3
169#endif
170
171#ifndef KMP_NESTED_HOT_TEAMS
172#define KMP_NESTED_HOT_TEAMS 0
173#define USE_NESTED_HOT_ARG(x)
174#else
175#if KMP_NESTED_HOT_TEAMS
176#define USE_NESTED_HOT_ARG(x) , x
177#else
178#define USE_NESTED_HOT_ARG(x)
179#endif
180#endif
181
182// Assume using BGET compare_exchange instruction instead of lock by default.
183#ifndef USE_CMP_XCHG_FOR_BGET
184#define USE_CMP_XCHG_FOR_BGET 1
185#endif
186
187// Test to see if queuing lock is better than bootstrap lock for bget
188// #ifndef USE_QUEUING_LOCK_FOR_BGET
189// #define USE_QUEUING_LOCK_FOR_BGET
190// #endif
191
192#define KMP_NSEC_PER_SEC 1000000000L
193#define KMP_USEC_PER_SEC 1000000L
194#define KMP_NSEC_PER_USEC 1000L
195
204enum {
209 /* 0x04 is no longer used */
218 KMP_IDENT_BARRIER_IMPL_MASK = 0x01C0,
219 KMP_IDENT_BARRIER_IMPL_FOR = 0x0040,
220 KMP_IDENT_BARRIER_IMPL_SECTIONS = 0x00C0,
221
222 KMP_IDENT_BARRIER_IMPL_SINGLE = 0x0140,
223 KMP_IDENT_BARRIER_IMPL_WORKSHARE = 0x01C0,
224
236 KMP_IDENT_ATOMIC_HINT_UNCONTENDED = 0x010000,
237 KMP_IDENT_ATOMIC_HINT_CONTENDED = 0x020000,
238 KMP_IDENT_ATOMIC_HINT_NONSPECULATIVE = 0x040000,
239 KMP_IDENT_ATOMIC_HINT_SPECULATIVE = 0x080000,
240 KMP_IDENT_OPENMP_SPEC_VERSION_MASK = 0xFF000000
241};
242
246typedef struct ident {
247 kmp_int32 reserved_1;
248 kmp_int32 flags;
250 kmp_int32 reserved_2;
251#if USE_ITT_BUILD
252/* but currently used for storing region-specific ITT */
253/* contextual information. */
254#endif /* USE_ITT_BUILD */
255 kmp_int32 reserved_3;
256 char const *psource;
260 // Returns the OpenMP version in form major*10+minor (e.g., 50 for 5.0)
261 kmp_int32 get_openmp_version() {
262 return (((flags & KMP_IDENT_OPENMP_SPEC_VERSION_MASK) >> 24) & 0xFF);
263 }
269// Some forward declarations.
270typedef union kmp_team kmp_team_t;
271typedef struct kmp_taskdata kmp_taskdata_t;
272typedef union kmp_task_team kmp_task_team_t;
273typedef union kmp_team kmp_team_p;
274typedef union kmp_info kmp_info_p;
275typedef union kmp_root kmp_root_p;
276
277template <bool C = false, bool S = true> class kmp_flag_32;
278template <bool C = false, bool S = true> class kmp_flag_64;
279template <bool C = false, bool S = true> class kmp_atomic_flag_64;
280class kmp_flag_oncore;
281
282#ifdef __cplusplus
283extern "C" {
284#endif
285
286/* ------------------------------------------------------------------------ */
287
288/* Pack two 32-bit signed integers into a 64-bit signed integer */
289/* ToDo: Fix word ordering for big-endian machines. */
290#define KMP_PACK_64(HIGH_32, LOW_32) \
291 ((kmp_int64)((((kmp_uint64)(HIGH_32)) << 32) | (kmp_uint64)(LOW_32)))
292
293// Generic string manipulation macros. Assume that _x is of type char *
294#define SKIP_WS(_x) \
295 { \
296 while (*(_x) == ' ' || *(_x) == '\t') \
297 (_x)++; \
298 }
299#define SKIP_DIGITS(_x) \
300 { \
301 while (*(_x) >= '0' && *(_x) <= '9') \
302 (_x)++; \
303 }
304#define SKIP_TOKEN(_x) \
305 { \
306 while ((*(_x) >= '0' && *(_x) <= '9') || (*(_x) >= 'a' && *(_x) <= 'z') || \
307 (*(_x) >= 'A' && *(_x) <= 'Z') || *(_x) == '_') \
308 (_x)++; \
309 }
310#define SKIP_TO(_x, _c) \
311 { \
312 while (*(_x) != '\0' && *(_x) != (_c)) \
313 (_x)++; \
314 }
315
316/* ------------------------------------------------------------------------ */
317
318#define KMP_MAX(x, y) ((x) > (y) ? (x) : (y))
319#define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))
320
321/* ------------------------------------------------------------------------ */
322/* Enumeration types */
323
324enum kmp_state_timer {
325 ts_stop,
326 ts_start,
327 ts_pause,
328
329 ts_last_state
330};
331
332enum dynamic_mode {
333 dynamic_default,
334#ifdef USE_LOAD_BALANCE
335 dynamic_load_balance,
336#endif /* USE_LOAD_BALANCE */
337 dynamic_random,
338 dynamic_thread_limit,
339 dynamic_max
340};
341
342/* external schedule constants, duplicate enum omp_sched in omp.h in order to
343 * not include it here */
344#ifndef KMP_SCHED_TYPE_DEFINED
345#define KMP_SCHED_TYPE_DEFINED
346typedef enum kmp_sched {
347 kmp_sched_lower = 0, // lower and upper bounds are for routine parameter check
348 // Note: need to adjust __kmp_sch_map global array in case enum is changed
349 kmp_sched_static = 1, // mapped to kmp_sch_static_chunked (33)
350 kmp_sched_dynamic = 2, // mapped to kmp_sch_dynamic_chunked (35)
351 kmp_sched_guided = 3, // mapped to kmp_sch_guided_chunked (36)
352 kmp_sched_auto = 4, // mapped to kmp_sch_auto (38)
353 kmp_sched_upper_std = 5, // upper bound for standard schedules
354 kmp_sched_lower_ext = 100, // lower bound of Intel extension schedules
355 kmp_sched_trapezoidal = 101, // mapped to kmp_sch_trapezoidal (39)
356#if KMP_STATIC_STEAL_ENABLED
357 kmp_sched_static_steal = 102, // mapped to kmp_sch_static_steal (44)
358#endif
359 kmp_sched_upper,
360 kmp_sched_default = kmp_sched_static, // default scheduling
361 kmp_sched_monotonic = 0x80000000
362} kmp_sched_t;
363#endif
364
369enum sched_type : kmp_int32 {
371 kmp_sch_static_chunked = 33,
373 kmp_sch_dynamic_chunked = 35,
375 kmp_sch_runtime = 37,
377 kmp_sch_trapezoidal = 39,
378
379 /* accessible only through KMP_SCHEDULE environment variable */
380 kmp_sch_static_greedy = 40,
381 kmp_sch_static_balanced = 41,
382 /* accessible only through KMP_SCHEDULE environment variable */
383 kmp_sch_guided_iterative_chunked = 42,
384 kmp_sch_guided_analytical_chunked = 43,
385 /* accessible only through KMP_SCHEDULE environment variable */
386 kmp_sch_static_steal = 44,
387
388 /* static with chunk adjustment (e.g., simd) */
389 kmp_sch_static_balanced_chunked = 45,
393 /* accessible only through KMP_SCHEDULE environment variable */
397 kmp_ord_static_chunked = 65,
399 kmp_ord_dynamic_chunked = 67,
400 kmp_ord_guided_chunked = 68,
401 kmp_ord_runtime = 69,
403 kmp_ord_trapezoidal = 71,
406 /* Schedules for Distribute construct */
410 /* For the "nomerge" versions, kmp_dispatch_next*() will always return a
411 single iteration/chunk, even if the loop is serialized. For the schedule
412 types listed above, the entire iteration vector is returned if the loop is
413 serialized. This doesn't work for gcc/gcomp sections. */
416 kmp_nm_static_chunked =
417 (kmp_sch_static_chunked - kmp_sch_lower + kmp_nm_lower),
419 kmp_nm_dynamic_chunked = 163,
421 kmp_nm_runtime = 165,
423 kmp_nm_trapezoidal = 167,
424
425 /* accessible only through KMP_SCHEDULE environment variable */
426 kmp_nm_static_greedy = 168,
427 kmp_nm_static_balanced = 169,
428 /* accessible only through KMP_SCHEDULE environment variable */
429 kmp_nm_guided_iterative_chunked = 170,
430 kmp_nm_guided_analytical_chunked = 171,
431 kmp_nm_static_steal =
432 172, /* accessible only through OMP_SCHEDULE environment variable */
433
434 kmp_nm_ord_static_chunked = 193,
436 kmp_nm_ord_dynamic_chunked = 195,
437 kmp_nm_ord_guided_chunked = 196,
438 kmp_nm_ord_runtime = 197,
440 kmp_nm_ord_trapezoidal = 199,
443 /* Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. Since
444 we need to distinguish the three possible cases (no modifier, monotonic
445 modifier, nonmonotonic modifier), we need separate bits for each modifier.
446 The absence of monotonic does not imply nonmonotonic, especially since 4.5
447 says that the behaviour of the "no modifier" case is implementation defined
448 in 4.5, but will become "nonmonotonic" in 5.0.
449
450 Since we're passing a full 32 bit value, we can use a couple of high bits
451 for these flags; out of paranoia we avoid the sign bit.
452
453 These modifiers can be or-ed into non-static schedules by the compiler to
454 pass the additional information. They will be stripped early in the
455 processing in __kmp_dispatch_init when setting up schedules, so most of the
456 code won't ever see schedules with these bits set. */
458 (1 << 29),
460 (1 << 30),
462#define SCHEDULE_WITHOUT_MODIFIERS(s) \
463 (enum sched_type)( \
465#define SCHEDULE_HAS_MONOTONIC(s) (((s)&kmp_sch_modifier_monotonic) != 0)
466#define SCHEDULE_HAS_NONMONOTONIC(s) (((s)&kmp_sch_modifier_nonmonotonic) != 0)
467#define SCHEDULE_HAS_NO_MODIFIERS(s) \
468 (((s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)) == 0)
469#define SCHEDULE_GET_MODIFIERS(s) \
470 ((enum sched_type)( \
471 (s) & (kmp_sch_modifier_nonmonotonic | kmp_sch_modifier_monotonic)))
472#define SCHEDULE_SET_MODIFIERS(s, m) \
473 (s = (enum sched_type)((kmp_int32)s | (kmp_int32)m))
474#define SCHEDULE_NONMONOTONIC 0
475#define SCHEDULE_MONOTONIC 1
476
479
480// Apply modifiers on internal kind to standard kind
481static inline void
482__kmp_sched_apply_mods_stdkind(kmp_sched_t *kind,
483 enum sched_type internal_kind) {
484 if (SCHEDULE_HAS_MONOTONIC(internal_kind)) {
485 *kind = (kmp_sched_t)((int)*kind | (int)kmp_sched_monotonic);
486 }
487}
488
489// Apply modifiers on standard kind to internal kind
490static inline void
491__kmp_sched_apply_mods_intkind(kmp_sched_t kind,
492 enum sched_type *internal_kind) {
493 if ((int)kind & (int)kmp_sched_monotonic) {
494 *internal_kind = (enum sched_type)((int)*internal_kind |
496 }
497}
498
499// Get standard schedule without modifiers
500static inline kmp_sched_t __kmp_sched_without_mods(kmp_sched_t kind) {
501 return (kmp_sched_t)((int)kind & ~((int)kmp_sched_monotonic));
502}
503
504/* Type to keep runtime schedule set via OMP_SCHEDULE or omp_set_schedule() */
505typedef union kmp_r_sched {
506 struct {
507 enum sched_type r_sched_type;
508 int chunk;
509 };
510 kmp_int64 sched;
511} kmp_r_sched_t;
512
513extern enum sched_type __kmp_sch_map[]; // map OMP 3.0 schedule types with our
514// internal schedule types
515
516enum library_type {
517 library_none,
518 library_serial,
519 library_turnaround,
520 library_throughput
521};
522
523#if KMP_OS_LINUX
524enum clock_function_type {
525 clock_function_gettimeofday,
526 clock_function_clock_gettime
527};
528#endif /* KMP_OS_LINUX */
529
530#if KMP_MIC_SUPPORTED
531enum mic_type { non_mic, mic1, mic2, mic3, dummy };
532#endif
533
534/* -- fast reduction stuff ------------------------------------------------ */
535
536#undef KMP_FAST_REDUCTION_BARRIER
537#define KMP_FAST_REDUCTION_BARRIER 1
538
539#undef KMP_FAST_REDUCTION_CORE_DUO
540#if KMP_ARCH_X86 || KMP_ARCH_X86_64
541#define KMP_FAST_REDUCTION_CORE_DUO 1
542#endif
543
544enum _reduction_method {
545 reduction_method_not_defined = 0,
546 critical_reduce_block = (1 << 8),
547 atomic_reduce_block = (2 << 8),
548 tree_reduce_block = (3 << 8),
549 empty_reduce_block = (4 << 8)
550};
551
552// Description of the packed_reduction_method variable:
553// The packed_reduction_method variable consists of two enum types variables
554// that are packed together into 0-th byte and 1-st byte:
555// 0: (packed_reduction_method & 0x000000FF) is a 'enum barrier_type' value of
556// barrier that will be used in fast reduction: bs_plain_barrier or
557// bs_reduction_barrier
558// 1: (packed_reduction_method & 0x0000FF00) is a reduction method that will
559// be used in fast reduction;
560// Reduction method is of 'enum _reduction_method' type and it's defined the way
561// so that the bits of 0-th byte are empty, so no need to execute a shift
562// instruction while packing/unpacking
563
564#if KMP_FAST_REDUCTION_BARRIER
565#define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
566 ((reduction_method) | (barrier_type))
567
568#define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
569 ((enum _reduction_method)((packed_reduction_method) & (0x0000FF00)))
570
571#define UNPACK_REDUCTION_BARRIER(packed_reduction_method) \
572 ((enum barrier_type)((packed_reduction_method) & (0x000000FF)))
573#else
574#define PACK_REDUCTION_METHOD_AND_BARRIER(reduction_method, barrier_type) \
575 (reduction_method)
576
577#define UNPACK_REDUCTION_METHOD(packed_reduction_method) \
578 (packed_reduction_method)
579
580#define UNPACK_REDUCTION_BARRIER(packed_reduction_method) (bs_plain_barrier)
581#endif
582
583#define TEST_REDUCTION_METHOD(packed_reduction_method, which_reduction_block) \
584 ((UNPACK_REDUCTION_METHOD(packed_reduction_method)) == \
585 (which_reduction_block))
586
587#if KMP_FAST_REDUCTION_BARRIER
588#define TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER \
589 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_reduction_barrier))
590
591#define TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER \
592 (PACK_REDUCTION_METHOD_AND_BARRIER(tree_reduce_block, bs_plain_barrier))
593#endif
594
595typedef int PACKED_REDUCTION_METHOD_T;
596
597/* -- end of fast reduction stuff ----------------------------------------- */
598
599#if KMP_OS_WINDOWS
600#define USE_CBLKDATA
601#if KMP_MSVC_COMPAT
602#pragma warning(push)
603#pragma warning(disable : 271 310)
604#endif
605#include <windows.h>
606#if KMP_MSVC_COMPAT
607#pragma warning(pop)
608#endif
609#endif
610
611#if KMP_OS_UNIX
612#if !KMP_OS_WASI
613#include <dlfcn.h>
614#endif
615#include <pthread.h>
616#endif
617
618enum kmp_hw_t : int {
619 KMP_HW_UNKNOWN = -1,
620 KMP_HW_SOCKET = 0,
621 KMP_HW_PROC_GROUP,
622 KMP_HW_NUMA,
623 KMP_HW_DIE,
624 KMP_HW_LLC,
625 KMP_HW_L3,
626 KMP_HW_TILE,
627 KMP_HW_MODULE,
628 KMP_HW_L2,
629 KMP_HW_L1,
630 KMP_HW_CORE,
631 KMP_HW_THREAD,
632 KMP_HW_LAST
633};
634
635typedef enum kmp_hw_core_type_t {
636 KMP_HW_CORE_TYPE_UNKNOWN = 0x0,
637#if KMP_ARCH_X86 || KMP_ARCH_X86_64
638 KMP_HW_CORE_TYPE_ATOM = 0x20,
639 KMP_HW_CORE_TYPE_CORE = 0x40,
640 KMP_HW_MAX_NUM_CORE_TYPES = 3,
641#else
642 KMP_HW_MAX_NUM_CORE_TYPES = 1,
643#endif
644} kmp_hw_core_type_t;
645
646#define KMP_HW_MAX_NUM_CORE_EFFS 8
647
648#define KMP_DEBUG_ASSERT_VALID_HW_TYPE(type) \
649 KMP_DEBUG_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
650#define KMP_ASSERT_VALID_HW_TYPE(type) \
651 KMP_ASSERT(type >= (kmp_hw_t)0 && type < KMP_HW_LAST)
652
653#define KMP_FOREACH_HW_TYPE(type) \
654 for (kmp_hw_t type = (kmp_hw_t)0; type < KMP_HW_LAST; \
655 type = (kmp_hw_t)((int)type + 1))
656
657const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural = false);
658const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural = false);
659const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type);
660
661/* Only Linux* OS and Windows* OS support thread affinity. */
662#if KMP_AFFINITY_SUPPORTED
663
664// GROUP_AFFINITY is already defined for _MSC_VER>=1600 (VS2010 and later).
665#if KMP_OS_WINDOWS
666#if _MSC_VER < 1600 && KMP_MSVC_COMPAT
667typedef struct GROUP_AFFINITY {
668 KAFFINITY Mask;
669 WORD Group;
670 WORD Reserved[3];
671} GROUP_AFFINITY;
672#endif /* _MSC_VER < 1600 */
673#if KMP_GROUP_AFFINITY
674extern int __kmp_num_proc_groups;
675#else
676static const int __kmp_num_proc_groups = 1;
677#endif /* KMP_GROUP_AFFINITY */
678typedef DWORD (*kmp_GetActiveProcessorCount_t)(WORD);
679extern kmp_GetActiveProcessorCount_t __kmp_GetActiveProcessorCount;
680
681typedef WORD (*kmp_GetActiveProcessorGroupCount_t)(void);
682extern kmp_GetActiveProcessorGroupCount_t __kmp_GetActiveProcessorGroupCount;
683
684typedef BOOL (*kmp_GetThreadGroupAffinity_t)(HANDLE, GROUP_AFFINITY *);
685extern kmp_GetThreadGroupAffinity_t __kmp_GetThreadGroupAffinity;
686
687typedef BOOL (*kmp_SetThreadGroupAffinity_t)(HANDLE, const GROUP_AFFINITY *,
688 GROUP_AFFINITY *);
689extern kmp_SetThreadGroupAffinity_t __kmp_SetThreadGroupAffinity;
690#endif /* KMP_OS_WINDOWS */
691
692#if KMP_USE_HWLOC
693extern hwloc_topology_t __kmp_hwloc_topology;
694extern int __kmp_hwloc_error;
695#endif
696
697extern size_t __kmp_affin_mask_size;
698#define KMP_AFFINITY_CAPABLE() (__kmp_affin_mask_size > 0)
699#define KMP_AFFINITY_DISABLE() (__kmp_affin_mask_size = 0)
700#define KMP_AFFINITY_ENABLE(mask_size) (__kmp_affin_mask_size = mask_size)
701#define KMP_CPU_SET_ITERATE(i, mask) \
702 for (i = (mask)->begin(); (int)i != (mask)->end(); i = (mask)->next(i))
703#define KMP_CPU_SET(i, mask) (mask)->set(i)
704#define KMP_CPU_ISSET(i, mask) (mask)->is_set(i)
705#define KMP_CPU_CLR(i, mask) (mask)->clear(i)
706#define KMP_CPU_ZERO(mask) (mask)->zero()
707#define KMP_CPU_ISEMPTY(mask) (mask)->empty()
708#define KMP_CPU_COPY(dest, src) (dest)->copy(src)
709#define KMP_CPU_AND(dest, src) (dest)->bitwise_and(src)
710#define KMP_CPU_COMPLEMENT(max_bit_number, mask) (mask)->bitwise_not()
711#define KMP_CPU_UNION(dest, src) (dest)->bitwise_or(src)
712#define KMP_CPU_EQUAL(dest, src) (dest)->is_equal(src)
713#define KMP_CPU_ALLOC(ptr) (ptr = __kmp_affinity_dispatch->allocate_mask())
714#define KMP_CPU_FREE(ptr) __kmp_affinity_dispatch->deallocate_mask(ptr)
715#define KMP_CPU_ALLOC_ON_STACK(ptr) KMP_CPU_ALLOC(ptr)
716#define KMP_CPU_FREE_FROM_STACK(ptr) KMP_CPU_FREE(ptr)
717#define KMP_CPU_INTERNAL_ALLOC(ptr) KMP_CPU_ALLOC(ptr)
718#define KMP_CPU_INTERNAL_FREE(ptr) KMP_CPU_FREE(ptr)
719#define KMP_CPU_INDEX(arr, i) __kmp_affinity_dispatch->index_mask_array(arr, i)
720#define KMP_CPU_ALLOC_ARRAY(arr, n) \
721 (arr = __kmp_affinity_dispatch->allocate_mask_array(n))
722#define KMP_CPU_FREE_ARRAY(arr, n) \
723 __kmp_affinity_dispatch->deallocate_mask_array(arr)
724#define KMP_CPU_INTERNAL_ALLOC_ARRAY(arr, n) KMP_CPU_ALLOC_ARRAY(arr, n)
725#define KMP_CPU_INTERNAL_FREE_ARRAY(arr, n) KMP_CPU_FREE_ARRAY(arr, n)
726#define __kmp_get_system_affinity(mask, abort_bool) \
727 (mask)->get_system_affinity(abort_bool)
728#define __kmp_set_system_affinity(mask, abort_bool) \
729 (mask)->set_system_affinity(abort_bool)
730#define __kmp_get_proc_group(mask) (mask)->get_proc_group()
731
732class KMPAffinity {
733public:
734 class Mask {
735 public:
736 void *operator new(size_t n);
737 void operator delete(void *p);
738 void *operator new[](size_t n);
739 void operator delete[](void *p);
740 virtual ~Mask() {}
741 // Set bit i to 1
742 virtual void set(int i) {}
743 // Return bit i
744 virtual bool is_set(int i) const { return false; }
745 // Set bit i to 0
746 virtual void clear(int i) {}
747 // Zero out entire mask
748 virtual void zero() {}
749 // Check whether mask is empty
750 virtual bool empty() const { return true; }
751 // Copy src into this mask
752 virtual void copy(const Mask *src) {}
753 // this &= rhs
754 virtual void bitwise_and(const Mask *rhs) {}
755 // this |= rhs
756 virtual void bitwise_or(const Mask *rhs) {}
757 // this = ~this
758 virtual void bitwise_not() {}
759 // this == rhs
760 virtual bool is_equal(const Mask *rhs) const { return false; }
761 // API for iterating over an affinity mask
762 // for (int i = mask->begin(); i != mask->end(); i = mask->next(i))
763 virtual int begin() const { return 0; }
764 virtual int end() const { return 0; }
765 virtual int next(int previous) const { return 0; }
766#if KMP_OS_WINDOWS
767 virtual int set_process_affinity(bool abort_on_error) const { return -1; }
768#endif
769 // Set the system's affinity to this affinity mask's value
770 virtual int set_system_affinity(bool abort_on_error) const { return -1; }
771 // Set this affinity mask to the current system affinity
772 virtual int get_system_affinity(bool abort_on_error) { return -1; }
773 // Only 1 DWORD in the mask should have any procs set.
774 // Return the appropriate index, or -1 for an invalid mask.
775 virtual int get_proc_group() const { return -1; }
776 int get_max_cpu() const {
777 int cpu;
778 int max_cpu = -1;
779 KMP_CPU_SET_ITERATE(cpu, this) {
780 if (cpu > max_cpu)
781 max_cpu = cpu;
782 }
783 return max_cpu;
784 }
785 };
786 void *operator new(size_t n);
787 void operator delete(void *p);
788 // Need virtual destructor
789 virtual ~KMPAffinity() = default;
790 // Determine if affinity is capable
791 virtual void determine_capable(const char *env_var) {}
792 // Bind the current thread to os proc
793 virtual void bind_thread(int proc) {}
794 // Factory functions to allocate/deallocate a mask
795 virtual Mask *allocate_mask() { return nullptr; }
796 virtual void deallocate_mask(Mask *m) {}
797 virtual Mask *allocate_mask_array(int num) { return nullptr; }
798 virtual void deallocate_mask_array(Mask *m) {}
799 virtual Mask *index_mask_array(Mask *m, int index) { return nullptr; }
800 static void pick_api();
801 static void destroy_api();
802 enum api_type {
803 NATIVE_OS
804#if KMP_USE_HWLOC
805 ,
806 HWLOC
807#endif
808 };
809 virtual api_type get_api_type() const {
810 KMP_ASSERT(0);
811 return NATIVE_OS;
812 }
813
814private:
815 static bool picked_api;
816};
817
818typedef KMPAffinity::Mask kmp_affin_mask_t;
819extern KMPAffinity *__kmp_affinity_dispatch;
820
821class kmp_affinity_raii_t {
822 kmp_affin_mask_t *mask;
823 bool restored;
824
825public:
826 kmp_affinity_raii_t(const kmp_affin_mask_t *new_mask = nullptr)
827 : restored(false) {
828 if (KMP_AFFINITY_CAPABLE()) {
829 KMP_CPU_ALLOC(mask);
830 KMP_ASSERT(mask != NULL);
831 __kmp_get_system_affinity(mask, /*abort_on_error=*/true);
832 if (new_mask)
833 __kmp_set_system_affinity(new_mask, /*abort_on_error=*/true);
834 }
835 }
836 void restore() {
837 if (!restored && KMP_AFFINITY_CAPABLE()) {
838 __kmp_set_system_affinity(mask, /*abort_on_error=*/true);
839 KMP_CPU_FREE(mask);
840 }
841 restored = true;
842 }
843 ~kmp_affinity_raii_t() { restore(); }
844};
845
846// Declare local char buffers with this size for printing debug and info
847// messages, using __kmp_affinity_print_mask().
848#define KMP_AFFIN_MASK_PRINT_LEN 1024
849
850enum affinity_type {
851 affinity_none = 0,
852 affinity_physical,
853 affinity_logical,
854 affinity_compact,
855 affinity_scatter,
856 affinity_explicit,
857 affinity_balanced,
858 affinity_disabled, // not used outsize the env var parser
859 affinity_default
860};
861
862enum affinity_top_method {
863 affinity_top_method_all = 0, // try all (supported) methods, in order
864#if KMP_ARCH_X86 || KMP_ARCH_X86_64
865 affinity_top_method_apicid,
866 affinity_top_method_x2apicid,
867 affinity_top_method_x2apicid_1f,
868#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
869 affinity_top_method_cpuinfo, // KMP_CPUINFO_FILE is usable on Windows* OS, too
870#if KMP_GROUP_AFFINITY
871 affinity_top_method_group,
872#endif /* KMP_GROUP_AFFINITY */
873 affinity_top_method_flat,
874#if KMP_USE_HWLOC
875 affinity_top_method_hwloc,
876#endif
877 affinity_top_method_default
878};
879
880#define affinity_respect_mask_default (2)
881
882typedef struct kmp_affinity_flags_t {
883 unsigned dups : 1;
884 unsigned verbose : 1;
885 unsigned warnings : 1;
886 unsigned respect : 2;
887 unsigned reset : 1;
888 unsigned initialized : 1;
889 unsigned core_types_gran : 1;
890 unsigned core_effs_gran : 1;
891 unsigned omp_places : 1;
892 unsigned reserved : 22;
893} kmp_affinity_flags_t;
894KMP_BUILD_ASSERT(sizeof(kmp_affinity_flags_t) == 4);
895
896typedef struct kmp_affinity_ids_t {
897 int os_id;
898 int ids[KMP_HW_LAST];
899} kmp_affinity_ids_t;
900
901typedef struct kmp_affinity_attrs_t {
902 int core_type : 8;
903 int core_eff : 8;
904 unsigned valid : 1;
905 unsigned reserved : 15;
906} kmp_affinity_attrs_t;
907#define KMP_AFFINITY_ATTRS_UNKNOWN \
908 { KMP_HW_CORE_TYPE_UNKNOWN, kmp_hw_attr_t::UNKNOWN_CORE_EFF, 0, 0 }
909
910typedef struct kmp_affinity_t {
911 char *proclist;
912 enum affinity_type type;
913 kmp_hw_t gran;
914 int gran_levels;
915 kmp_affinity_attrs_t core_attr_gran;
916 int compact;
917 int offset;
918 kmp_affinity_flags_t flags;
919 unsigned num_masks;
920 kmp_affin_mask_t *masks;
921 kmp_affinity_ids_t *ids;
922 kmp_affinity_attrs_t *attrs;
923 unsigned num_os_id_masks;
924 kmp_affin_mask_t *os_id_masks;
925 const char *env_var;
926} kmp_affinity_t;
927
928#define KMP_AFFINITY_INIT(env) \
929 { \
930 nullptr, affinity_default, KMP_HW_UNKNOWN, -1, KMP_AFFINITY_ATTRS_UNKNOWN, \
931 0, 0, \
932 {TRUE, FALSE, TRUE, affinity_respect_mask_default, FALSE, FALSE, \
933 FALSE, FALSE, FALSE}, \
934 0, nullptr, nullptr, nullptr, 0, nullptr, env \
935 }
936
937extern enum affinity_top_method __kmp_affinity_top_method;
938extern kmp_affinity_t __kmp_affinity;
939extern kmp_affinity_t __kmp_hh_affinity;
940extern kmp_affinity_t *__kmp_affinities[2];
941
942extern void __kmp_affinity_bind_thread(int which);
943
944extern kmp_affin_mask_t *__kmp_affin_fullMask;
945extern kmp_affin_mask_t *__kmp_affin_origMask;
946extern char *__kmp_cpuinfo_file;
947
948#if KMP_WEIGHTED_ITERATIONS_SUPPORTED
949extern int __kmp_first_osid_with_ecore;
950#endif
951
952#endif /* KMP_AFFINITY_SUPPORTED */
953
954// This needs to be kept in sync with the values in omp.h !!!
955typedef enum kmp_proc_bind_t {
956 proc_bind_false = 0,
957 proc_bind_true,
958 proc_bind_primary,
959 proc_bind_close,
960 proc_bind_spread,
961 proc_bind_intel, // use KMP_AFFINITY interface
962 proc_bind_default
963} kmp_proc_bind_t;
964
965typedef struct kmp_nested_proc_bind_t {
966 kmp_proc_bind_t *bind_types;
967 int size;
968 int used;
969} kmp_nested_proc_bind_t;
970
971extern kmp_nested_proc_bind_t __kmp_nested_proc_bind;
972extern kmp_proc_bind_t __kmp_teams_proc_bind;
973
974extern int __kmp_display_affinity;
975extern char *__kmp_affinity_format;
976static const size_t KMP_AFFINITY_FORMAT_SIZE = 512;
977#if OMPT_SUPPORT
978extern int __kmp_tool;
979extern char *__kmp_tool_libraries;
980#endif // OMPT_SUPPORT
981
982#if KMP_AFFINITY_SUPPORTED
983#define KMP_PLACE_ALL (-1)
984#define KMP_PLACE_UNDEFINED (-2)
985// Is KMP_AFFINITY is being used instead of OMP_PROC_BIND/OMP_PLACES?
986#define KMP_AFFINITY_NON_PROC_BIND \
987 ((__kmp_nested_proc_bind.bind_types[0] == proc_bind_false || \
988 __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) && \
989 (__kmp_affinity.num_masks > 0 || __kmp_affinity.type == affinity_balanced))
990#endif /* KMP_AFFINITY_SUPPORTED */
991
992extern int __kmp_affinity_num_places;
993
994typedef enum kmp_cancel_kind_t {
995 cancel_noreq = 0,
996 cancel_parallel = 1,
997 cancel_loop = 2,
998 cancel_sections = 3,
999 cancel_taskgroup = 4
1000} kmp_cancel_kind_t;
1001
1002// KMP_HW_SUBSET support:
1003typedef struct kmp_hws_item {
1004 int num;
1005 int offset;
1006} kmp_hws_item_t;
1007
1008extern kmp_hws_item_t __kmp_hws_socket;
1009extern kmp_hws_item_t __kmp_hws_die;
1010extern kmp_hws_item_t __kmp_hws_node;
1011extern kmp_hws_item_t __kmp_hws_tile;
1012extern kmp_hws_item_t __kmp_hws_core;
1013extern kmp_hws_item_t __kmp_hws_proc;
1014extern int __kmp_hws_requested;
1015extern int __kmp_hws_abs_flag; // absolute or per-item number requested
1016
1017/* ------------------------------------------------------------------------ */
1018
1019#define KMP_PAD(type, sz) \
1020 (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1))
1021
1022// We need to avoid using -1 as a GTID as +1 is added to the gtid
1023// when storing it in a lock, and the value 0 is reserved.
1024#define KMP_GTID_DNE (-2) /* Does not exist */
1025#define KMP_GTID_SHUTDOWN (-3) /* Library is shutting down */
1026#define KMP_GTID_MONITOR (-4) /* Monitor thread ID */
1027#define KMP_GTID_UNKNOWN (-5) /* Is not known */
1028#define KMP_GTID_MIN (-6) /* Minimal gtid for low bound check in DEBUG */
1029
1030/* OpenMP 5.0 Memory Management support */
1031
1032#ifndef __OMP_H
1033// Duplicate type definitions from omp.h
1034typedef uintptr_t omp_uintptr_t;
1035
1036typedef enum {
1037 omp_atk_sync_hint = 1,
1038 omp_atk_alignment = 2,
1039 omp_atk_access = 3,
1040 omp_atk_pool_size = 4,
1041 omp_atk_fallback = 5,
1042 omp_atk_fb_data = 6,
1043 omp_atk_pinned = 7,
1044 omp_atk_partition = 8
1045} omp_alloctrait_key_t;
1046
1047typedef enum {
1048 omp_atv_false = 0,
1049 omp_atv_true = 1,
1050 omp_atv_contended = 3,
1051 omp_atv_uncontended = 4,
1052 omp_atv_serialized = 5,
1053 omp_atv_sequential = omp_atv_serialized, // (deprecated)
1054 omp_atv_private = 6,
1055 omp_atv_all = 7,
1056 omp_atv_thread = 8,
1057 omp_atv_pteam = 9,
1058 omp_atv_cgroup = 10,
1059 omp_atv_default_mem_fb = 11,
1060 omp_atv_null_fb = 12,
1061 omp_atv_abort_fb = 13,
1062 omp_atv_allocator_fb = 14,
1063 omp_atv_environment = 15,
1064 omp_atv_nearest = 16,
1065 omp_atv_blocked = 17,
1066 omp_atv_interleaved = 18
1067} omp_alloctrait_value_t;
1068#define omp_atv_default ((omp_uintptr_t)-1)
1069
1070typedef void *omp_memspace_handle_t;
1071extern omp_memspace_handle_t const omp_default_mem_space;
1072extern omp_memspace_handle_t const omp_large_cap_mem_space;
1073extern omp_memspace_handle_t const omp_const_mem_space;
1074extern omp_memspace_handle_t const omp_high_bw_mem_space;
1075extern omp_memspace_handle_t const omp_low_lat_mem_space;
1076extern omp_memspace_handle_t const llvm_omp_target_host_mem_space;
1077extern omp_memspace_handle_t const llvm_omp_target_shared_mem_space;
1078extern omp_memspace_handle_t const llvm_omp_target_device_mem_space;
1079
1080typedef struct {
1081 omp_alloctrait_key_t key;
1082 omp_uintptr_t value;
1083} omp_alloctrait_t;
1084
1085typedef void *omp_allocator_handle_t;
1086extern omp_allocator_handle_t const omp_null_allocator;
1087extern omp_allocator_handle_t const omp_default_mem_alloc;
1088extern omp_allocator_handle_t const omp_large_cap_mem_alloc;
1089extern omp_allocator_handle_t const omp_const_mem_alloc;
1090extern omp_allocator_handle_t const omp_high_bw_mem_alloc;
1091extern omp_allocator_handle_t const omp_low_lat_mem_alloc;
1092extern omp_allocator_handle_t const omp_cgroup_mem_alloc;
1093extern omp_allocator_handle_t const omp_pteam_mem_alloc;
1094extern omp_allocator_handle_t const omp_thread_mem_alloc;
1095extern omp_allocator_handle_t const llvm_omp_target_host_mem_alloc;
1096extern omp_allocator_handle_t const llvm_omp_target_shared_mem_alloc;
1097extern omp_allocator_handle_t const llvm_omp_target_device_mem_alloc;
1098extern omp_allocator_handle_t const kmp_max_mem_alloc;
1099extern omp_allocator_handle_t __kmp_def_allocator;
1100
1101// end of duplicate type definitions from omp.h
1102#endif
1103
1104extern int __kmp_memkind_available;
1105
1106typedef omp_memspace_handle_t kmp_memspace_t; // placeholder
1107
1108typedef struct kmp_allocator_t {
1109 omp_memspace_handle_t memspace;
1110 void **memkind; // pointer to memkind
1111 size_t alignment;
1112 omp_alloctrait_value_t fb;
1113 kmp_allocator_t *fb_data;
1114 kmp_uint64 pool_size;
1115 kmp_uint64 pool_used;
1116 bool pinned;
1117} kmp_allocator_t;
1118
1119extern omp_allocator_handle_t __kmpc_init_allocator(int gtid,
1120 omp_memspace_handle_t,
1121 int ntraits,
1122 omp_alloctrait_t traits[]);
1123extern void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t al);
1124extern void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t al);
1125extern omp_allocator_handle_t __kmpc_get_default_allocator(int gtid);
1126// external interfaces, may be used by compiler
1127extern void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
1128extern void *__kmpc_aligned_alloc(int gtid, size_t align, size_t sz,
1129 omp_allocator_handle_t al);
1130extern void *__kmpc_calloc(int gtid, size_t nmemb, size_t sz,
1131 omp_allocator_handle_t al);
1132extern void *__kmpc_realloc(int gtid, void *ptr, size_t sz,
1133 omp_allocator_handle_t al,
1134 omp_allocator_handle_t free_al);
1135extern void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1136// internal interfaces, contain real implementation
1137extern void *__kmp_alloc(int gtid, size_t align, size_t sz,
1138 omp_allocator_handle_t al);
1139extern void *__kmp_calloc(int gtid, size_t align, size_t nmemb, size_t sz,
1140 omp_allocator_handle_t al);
1141extern void *__kmp_realloc(int gtid, void *ptr, size_t sz,
1142 omp_allocator_handle_t al,
1143 omp_allocator_handle_t free_al);
1144extern void ___kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
1145
1146extern void __kmp_init_memkind();
1147extern void __kmp_fini_memkind();
1148extern void __kmp_init_target_mem();
1149
1150/* ------------------------------------------------------------------------ */
1151
1152#if ENABLE_LIBOMPTARGET
1153extern void __kmp_init_target_task();
1154#endif
1155
1156/* ------------------------------------------------------------------------ */
1157
1158#define KMP_UINT64_MAX \
1159 (~((kmp_uint64)1 << ((sizeof(kmp_uint64) * (1 << 3)) - 1)))
1160
1161#define KMP_MIN_NTH 1
1162
1163#ifndef KMP_MAX_NTH
1164#if defined(PTHREAD_THREADS_MAX) && PTHREAD_THREADS_MAX < INT_MAX
1165#define KMP_MAX_NTH PTHREAD_THREADS_MAX
1166#else
1167#ifdef __ve__
1168// VE's pthread supports only up to 64 threads per a VE process.
1169// Please check p. 14 of following documentation for more details.
1170// https://sxauroratsubasa.sakura.ne.jp/documents/veos/en/VEOS_high_level_design.pdf
1171#define KMP_MAX_NTH 64
1172#else
1173#define KMP_MAX_NTH INT_MAX
1174#endif
1175#endif
1176#endif /* KMP_MAX_NTH */
1177
1178#ifdef PTHREAD_STACK_MIN
1179#define KMP_MIN_STKSIZE ((size_t)PTHREAD_STACK_MIN)
1180#else
1181#define KMP_MIN_STKSIZE ((size_t)(32 * 1024))
1182#endif
1183
1184#define KMP_MAX_STKSIZE (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1185
1186#if KMP_ARCH_X86
1187#define KMP_DEFAULT_STKSIZE ((size_t)(2 * 1024 * 1024))
1188#elif KMP_ARCH_X86_64
1189#define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1190#define KMP_BACKUP_STKSIZE ((size_t)(2 * 1024 * 1024))
1191#elif KMP_ARCH_VE
1192// Minimum stack size for pthread for VE is 4MB.
1193// https://www.hpc.nec/documents/veos/en/glibc/Difference_Points_glibc.htm
1194#define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1195#elif KMP_OS_AIX
1196// The default stack size for worker threads on AIX is 4MB.
1197#define KMP_DEFAULT_STKSIZE ((size_t)(4 * 1024 * 1024))
1198#else
1199#define KMP_DEFAULT_STKSIZE ((size_t)(1024 * 1024))
1200#endif
1201
1202#define KMP_DEFAULT_MALLOC_POOL_INCR ((size_t)(1024 * 1024))
1203#define KMP_MIN_MALLOC_POOL_INCR ((size_t)(4 * 1024))
1204#define KMP_MAX_MALLOC_POOL_INCR \
1205 (~((size_t)1 << ((sizeof(size_t) * (1 << 3)) - 1)))
1206
1207#define KMP_MIN_STKOFFSET (0)
1208#define KMP_MAX_STKOFFSET KMP_MAX_STKSIZE
1209#if KMP_OS_DARWIN
1210#define KMP_DEFAULT_STKOFFSET KMP_MIN_STKOFFSET
1211#else
1212#define KMP_DEFAULT_STKOFFSET CACHE_LINE
1213#endif
1214
1215#define KMP_MIN_STKPADDING (0)
1216#define KMP_MAX_STKPADDING (2 * 1024 * 1024)
1217
1218#define KMP_BLOCKTIME_MULTIPLIER \
1219 (1000000) /* number of blocktime units per second */
1220#define KMP_MIN_BLOCKTIME (0)
1221#define KMP_MAX_BLOCKTIME \
1222 (INT_MAX) /* Must be this for "infinite" setting the work */
1223
1224/* __kmp_blocktime is in microseconds */
1225#define KMP_DEFAULT_BLOCKTIME (__kmp_is_hybrid_cpu() ? (0) : (200000))
1226
1227#if KMP_USE_MONITOR
1228#define KMP_DEFAULT_MONITOR_STKSIZE ((size_t)(64 * 1024))
1229#define KMP_MIN_MONITOR_WAKEUPS (1) // min times monitor wakes up per second
1230#define KMP_MAX_MONITOR_WAKEUPS (1000) // max times monitor can wake up per sec
1231
1232/* Calculate new number of monitor wakeups for a specific block time based on
1233 previous monitor_wakeups. Only allow increasing number of wakeups */
1234#define KMP_WAKEUPS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1235 (((blocktime) == KMP_MAX_BLOCKTIME) ? (monitor_wakeups) \
1236 : ((blocktime) == KMP_MIN_BLOCKTIME) ? KMP_MAX_MONITOR_WAKEUPS \
1237 : ((monitor_wakeups) > (KMP_BLOCKTIME_MULTIPLIER / (blocktime))) \
1238 ? (monitor_wakeups) \
1239 : (KMP_BLOCKTIME_MULTIPLIER) / (blocktime))
1240
1241/* Calculate number of intervals for a specific block time based on
1242 monitor_wakeups */
1243#define KMP_INTERVALS_FROM_BLOCKTIME(blocktime, monitor_wakeups) \
1244 (((blocktime) + (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)) - 1) / \
1245 (KMP_BLOCKTIME_MULTIPLIER / (monitor_wakeups)))
1246#else
1247#define KMP_BLOCKTIME(team, tid) \
1248 (get__bt_set(team, tid) ? get__blocktime(team, tid) : __kmp_dflt_blocktime)
1249#if KMP_OS_UNIX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1250// HW TSC is used to reduce overhead (clock tick instead of nanosecond).
1251extern kmp_uint64 __kmp_ticks_per_msec;
1252extern kmp_uint64 __kmp_ticks_per_usec;
1253#if KMP_COMPILER_ICC || KMP_COMPILER_ICX
1254#define KMP_NOW() ((kmp_uint64)_rdtsc())
1255#else
1256#define KMP_NOW() __kmp_hardware_timestamp()
1257#endif
1258#define KMP_BLOCKTIME_INTERVAL(team, tid) \
1259 ((kmp_uint64)KMP_BLOCKTIME(team, tid) * __kmp_ticks_per_usec)
1260#define KMP_BLOCKING(goal, count) ((goal) > KMP_NOW())
1261#else
1262// System time is retrieved sporadically while blocking.
1263extern kmp_uint64 __kmp_now_nsec();
1264#define KMP_NOW() __kmp_now_nsec()
1265#define KMP_BLOCKTIME_INTERVAL(team, tid) \
1266 ((kmp_uint64)KMP_BLOCKTIME(team, tid) * (kmp_uint64)KMP_NSEC_PER_USEC)
1267#define KMP_BLOCKING(goal, count) ((count) % 1000 != 0 || (goal) > KMP_NOW())
1268#endif
1269#endif // KMP_USE_MONITOR
1270
1271#define KMP_MIN_STATSCOLS 40
1272#define KMP_MAX_STATSCOLS 4096
1273#define KMP_DEFAULT_STATSCOLS 80
1274
1275#define KMP_MIN_INTERVAL 0
1276#define KMP_MAX_INTERVAL (INT_MAX - 1)
1277#define KMP_DEFAULT_INTERVAL 0
1278
1279#define KMP_MIN_CHUNK 1
1280#define KMP_MAX_CHUNK (INT_MAX - 1)
1281#define KMP_DEFAULT_CHUNK 1
1282
1283#define KMP_MIN_DISP_NUM_BUFF 1
1284#define KMP_DFLT_DISP_NUM_BUFF 7
1285#define KMP_MAX_DISP_NUM_BUFF 4096
1286
1287#define KMP_MAX_ORDERED 8
1288
1289#define KMP_MAX_FIELDS 32
1290
1291#define KMP_MAX_BRANCH_BITS 31
1292
1293#define KMP_MAX_ACTIVE_LEVELS_LIMIT INT_MAX
1294
1295#define KMP_MAX_DEFAULT_DEVICE_LIMIT INT_MAX
1296
1297#define KMP_MAX_TASK_PRIORITY_LIMIT INT_MAX
1298
1299/* Minimum number of threads before switch to TLS gtid (experimentally
1300 determined) */
1301/* josh TODO: what about OS X* tuning? */
1302#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1303#define KMP_TLS_GTID_MIN 5
1304#else
1305#define KMP_TLS_GTID_MIN INT_MAX
1306#endif
1307
1308#define KMP_MASTER_TID(tid) (0 == (tid))
1309#define KMP_WORKER_TID(tid) (0 != (tid))
1310
1311#define KMP_MASTER_GTID(gtid) (0 == __kmp_tid_from_gtid((gtid)))
1312#define KMP_WORKER_GTID(gtid) (0 != __kmp_tid_from_gtid((gtid)))
1313#define KMP_INITIAL_GTID(gtid) (0 == (gtid))
1314
1315#ifndef TRUE
1316#define FALSE 0
1317#define TRUE (!FALSE)
1318#endif
1319
1320/* NOTE: all of the following constants must be even */
1321
1322#if KMP_OS_WINDOWS
1323#define KMP_INIT_WAIT 64U /* initial number of spin-tests */
1324#define KMP_NEXT_WAIT 32U /* susequent number of spin-tests */
1325#elif KMP_OS_LINUX
1326#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1327#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1328#elif KMP_OS_DARWIN
1329/* TODO: tune for KMP_OS_DARWIN */
1330#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1331#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1332#elif KMP_OS_DRAGONFLY
1333/* TODO: tune for KMP_OS_DRAGONFLY */
1334#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1335#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1336#elif KMP_OS_FREEBSD
1337/* TODO: tune for KMP_OS_FREEBSD */
1338#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1339#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1340#elif KMP_OS_NETBSD
1341/* TODO: tune for KMP_OS_NETBSD */
1342#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1343#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1344#elif KMP_OS_OPENBSD
1345/* TODO: tune for KMP_OS_OPENBSD */
1346#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1347#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1348#elif KMP_OS_HURD
1349/* TODO: tune for KMP_OS_HURD */
1350#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1351#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1352#elif KMP_OS_SOLARIS
1353/* TODO: tune for KMP_OS_SOLARIS */
1354#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1355#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1356#elif KMP_OS_WASI
1357/* TODO: tune for KMP_OS_WASI */
1358#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1359#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1360#elif KMP_OS_AIX
1361/* TODO: tune for KMP_OS_AIX */
1362#define KMP_INIT_WAIT 1024U /* initial number of spin-tests */
1363#define KMP_NEXT_WAIT 512U /* susequent number of spin-tests */
1364#endif
1365
1366#if KMP_ARCH_X86 || KMP_ARCH_X86_64
1367typedef struct kmp_cpuid {
1368 kmp_uint32 eax;
1369 kmp_uint32 ebx;
1370 kmp_uint32 ecx;
1371 kmp_uint32 edx;
1372} kmp_cpuid_t;
1373
1374typedef struct kmp_cpuinfo_flags_t {
1375 unsigned sse2 : 1; // 0 if SSE2 instructions are not supported, 1 otherwise.
1376 unsigned rtm : 1; // 0 if RTM instructions are not supported, 1 otherwise.
1377 unsigned hybrid : 1;
1378 unsigned reserved : 29; // Ensure size of 32 bits
1379} kmp_cpuinfo_flags_t;
1380
1381typedef struct kmp_cpuinfo {
1382 int initialized; // If 0, other fields are not initialized.
1383 int signature; // CPUID(1).EAX
1384 int family; // CPUID(1).EAX[27:20]+CPUID(1).EAX[11:8] (Extended Family+Family)
1385 int model; // ( CPUID(1).EAX[19:16] << 4 ) + CPUID(1).EAX[7:4] ( ( Extended
1386 // Model << 4 ) + Model)
1387 int stepping; // CPUID(1).EAX[3:0] ( Stepping )
1388 kmp_cpuinfo_flags_t flags;
1389 int apic_id;
1390 int physical_id;
1391 int logical_id;
1392 kmp_uint64 frequency; // Nominal CPU frequency in Hz.
1393 char name[3 * sizeof(kmp_cpuid_t)]; // CPUID(0x80000002,0x80000003,0x80000004)
1394} kmp_cpuinfo_t;
1395
1396extern void __kmp_query_cpuid(kmp_cpuinfo_t *p);
1397
1398#if KMP_OS_UNIX
1399// subleaf is only needed for cache and topology discovery and can be set to
1400// zero in most cases
1401static inline void __kmp_x86_cpuid(int leaf, int subleaf, struct kmp_cpuid *p) {
1402 __asm__ __volatile__("cpuid"
1403 : "=a"(p->eax), "=b"(p->ebx), "=c"(p->ecx), "=d"(p->edx)
1404 : "a"(leaf), "c"(subleaf));
1405}
1406// Load p into FPU control word
1407static inline void __kmp_load_x87_fpu_control_word(const kmp_int16 *p) {
1408 __asm__ __volatile__("fldcw %0" : : "m"(*p));
1409}
1410// Store FPU control word into p
1411static inline void __kmp_store_x87_fpu_control_word(kmp_int16 *p) {
1412 __asm__ __volatile__("fstcw %0" : "=m"(*p));
1413}
1414static inline void __kmp_clear_x87_fpu_status_word() {
1415#if KMP_MIC
1416 // 32-bit protected mode x87 FPU state
1417 struct x87_fpu_state {
1418 unsigned cw;
1419 unsigned sw;
1420 unsigned tw;
1421 unsigned fip;
1422 unsigned fips;
1423 unsigned fdp;
1424 unsigned fds;
1425 };
1426 struct x87_fpu_state fpu_state = {0, 0, 0, 0, 0, 0, 0};
1427 __asm__ __volatile__("fstenv %0\n\t" // store FP env
1428 "andw $0x7f00, %1\n\t" // clear 0-7,15 bits of FP SW
1429 "fldenv %0\n\t" // load FP env back
1430 : "+m"(fpu_state), "+m"(fpu_state.sw));
1431#else
1432 __asm__ __volatile__("fnclex");
1433#endif // KMP_MIC
1434}
1435#if __SSE__
1436static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1437static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1438#else
1439static inline void __kmp_load_mxcsr(const kmp_uint32 *p) {}
1440static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = 0; }
1441#endif
1442#else
1443// Windows still has these as external functions in assembly file
1444extern void __kmp_x86_cpuid(int mode, int mode2, struct kmp_cpuid *p);
1445extern void __kmp_load_x87_fpu_control_word(const kmp_int16 *p);
1446extern void __kmp_store_x87_fpu_control_word(kmp_int16 *p);
1447extern void __kmp_clear_x87_fpu_status_word();
1448static inline void __kmp_load_mxcsr(const kmp_uint32 *p) { _mm_setcsr(*p); }
1449static inline void __kmp_store_mxcsr(kmp_uint32 *p) { *p = _mm_getcsr(); }
1450#endif // KMP_OS_UNIX
1451
1452#define KMP_X86_MXCSR_MASK 0xffffffc0 /* ignore status flags (6 lsb) */
1453
1454// User-level Monitor/Mwait
1455#if KMP_HAVE_UMWAIT
1456// We always try for UMWAIT first
1457#if KMP_HAVE_WAITPKG_INTRINSICS
1458#if KMP_HAVE_IMMINTRIN_H
1459#include <immintrin.h>
1460#elif KMP_HAVE_INTRIN_H
1461#include <intrin.h>
1462#endif
1463#endif // KMP_HAVE_WAITPKG_INTRINSICS
1464
1465KMP_ATTRIBUTE_TARGET_WAITPKG
1466static inline int __kmp_tpause(uint32_t hint, uint64_t counter) {
1467#if !KMP_HAVE_WAITPKG_INTRINSICS
1468 uint32_t timeHi = uint32_t(counter >> 32);
1469 uint32_t timeLo = uint32_t(counter & 0xffffffff);
1470 char flag;
1471 __asm__ volatile("#tpause\n.byte 0x66, 0x0F, 0xAE, 0xF1\n"
1472 "setb %0"
1473 // The "=q" restraint means any register accessible as rl
1474 // in 32-bit mode: a, b, c, and d;
1475 // in 64-bit mode: any integer register
1476 : "=q"(flag)
1477 : "a"(timeLo), "d"(timeHi), "c"(hint)
1478 :);
1479 return flag;
1480#else
1481 return _tpause(hint, counter);
1482#endif
1483}
1484KMP_ATTRIBUTE_TARGET_WAITPKG
1485static inline void __kmp_umonitor(void *cacheline) {
1486#if !KMP_HAVE_WAITPKG_INTRINSICS
1487 __asm__ volatile("# umonitor\n.byte 0xF3, 0x0F, 0xAE, 0x01 "
1488 :
1489 : "a"(cacheline)
1490 :);
1491#else
1492 _umonitor(cacheline);
1493#endif
1494}
1495KMP_ATTRIBUTE_TARGET_WAITPKG
1496static inline int __kmp_umwait(uint32_t hint, uint64_t counter) {
1497#if !KMP_HAVE_WAITPKG_INTRINSICS
1498 uint32_t timeHi = uint32_t(counter >> 32);
1499 uint32_t timeLo = uint32_t(counter & 0xffffffff);
1500 char flag;
1501 __asm__ volatile("#umwait\n.byte 0xF2, 0x0F, 0xAE, 0xF1\n"
1502 "setb %0"
1503 // The "=q" restraint means any register accessible as rl
1504 // in 32-bit mode: a, b, c, and d;
1505 // in 64-bit mode: any integer register
1506 : "=q"(flag)
1507 : "a"(timeLo), "d"(timeHi), "c"(hint)
1508 :);
1509 return flag;
1510#else
1511 return _umwait(hint, counter);
1512#endif
1513}
1514#elif KMP_HAVE_MWAIT
1515#if KMP_OS_UNIX
1516#include <pmmintrin.h>
1517#else
1518#include <intrin.h>
1519#endif
1520#if KMP_OS_UNIX
1521__attribute__((target("sse3")))
1522#endif
1523static inline void
1524__kmp_mm_monitor(void *cacheline, unsigned extensions, unsigned hints) {
1525 _mm_monitor(cacheline, extensions, hints);
1526}
1527#if KMP_OS_UNIX
1528__attribute__((target("sse3")))
1529#endif
1530static inline void
1531__kmp_mm_mwait(unsigned extensions, unsigned hints) {
1532 _mm_mwait(extensions, hints);
1533}
1534#endif // KMP_HAVE_UMWAIT
1535
1536#if KMP_ARCH_X86
1537extern void __kmp_x86_pause(void);
1538#elif KMP_MIC
1539// Performance testing on KNC (C0QS-7120 P/A/X/D, 61-core, 16 GB Memory) showed
1540// regression after removal of extra PAUSE from spin loops. Changing
1541// the delay from 100 to 300 showed even better performance than double PAUSE
1542// on Spec OMP2001 and LCPC tasking tests, no regressions on EPCC.
1543static inline void __kmp_x86_pause(void) { _mm_delay_32(300); }
1544#else
1545static inline void __kmp_x86_pause(void) { _mm_pause(); }
1546#endif
1547#define KMP_CPU_PAUSE() __kmp_x86_pause()
1548#elif KMP_ARCH_PPC64
1549#define KMP_PPC64_PRI_LOW() __asm__ volatile("or 1, 1, 1")
1550#define KMP_PPC64_PRI_MED() __asm__ volatile("or 2, 2, 2")
1551#define KMP_PPC64_PRI_LOC_MB() __asm__ volatile("" : : : "memory")
1552#define KMP_CPU_PAUSE() \
1553 do { \
1554 KMP_PPC64_PRI_LOW(); \
1555 KMP_PPC64_PRI_MED(); \
1556 KMP_PPC64_PRI_LOC_MB(); \
1557 } while (0)
1558#else
1559#define KMP_CPU_PAUSE() /* nothing to do */
1560#endif
1561
1562#define KMP_INIT_YIELD(count) \
1563 { (count) = __kmp_yield_init; }
1564
1565#define KMP_INIT_BACKOFF(time) \
1566 { (time) = __kmp_pause_init; }
1567
1568#define KMP_OVERSUBSCRIBED \
1569 (TCR_4(__kmp_nth) > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc))
1570
1571#define KMP_TRY_YIELD \
1572 ((__kmp_use_yield == 1) || (__kmp_use_yield == 2 && (KMP_OVERSUBSCRIBED)))
1573
1574#define KMP_TRY_YIELD_OVERSUB \
1575 ((__kmp_use_yield == 1 || __kmp_use_yield == 2) && (KMP_OVERSUBSCRIBED))
1576
1577#define KMP_YIELD(cond) \
1578 { \
1579 KMP_CPU_PAUSE(); \
1580 if ((cond) && (KMP_TRY_YIELD)) \
1581 __kmp_yield(); \
1582 }
1583
1584#define KMP_YIELD_OVERSUB() \
1585 { \
1586 KMP_CPU_PAUSE(); \
1587 if ((KMP_TRY_YIELD_OVERSUB)) \
1588 __kmp_yield(); \
1589 }
1590
1591// Note the decrement of 2 in the following Macros. With KMP_LIBRARY=turnaround,
1592// there should be no yielding since initial value from KMP_INIT_YIELD() is odd.
1593#define KMP_YIELD_SPIN(count) \
1594 { \
1595 KMP_CPU_PAUSE(); \
1596 if (KMP_TRY_YIELD) { \
1597 (count) -= 2; \
1598 if (!(count)) { \
1599 __kmp_yield(); \
1600 (count) = __kmp_yield_next; \
1601 } \
1602 } \
1603 }
1604
1605// If TPAUSE is available & enabled, use it. If oversubscribed, use the slower
1606// (C0.2) state, which improves performance of other SMT threads on the same
1607// core, otherwise, use the fast (C0.1) default state, or whatever the user has
1608// requested. Uses a timed TPAUSE, and exponential backoff. If TPAUSE isn't
1609// available, fall back to the regular CPU pause and yield combination.
1610#if KMP_HAVE_UMWAIT
1611#define KMP_TPAUSE_MAX_MASK ((kmp_uint64)0xFFFF)
1612#define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \
1613 { \
1614 if (__kmp_tpause_enabled) { \
1615 if (KMP_OVERSUBSCRIBED) { \
1616 __kmp_tpause(0, (time)); \
1617 } else { \
1618 __kmp_tpause(__kmp_tpause_hint, (time)); \
1619 } \
1620 (time) = (time << 1 | 1) & KMP_TPAUSE_MAX_MASK; \
1621 } else { \
1622 KMP_CPU_PAUSE(); \
1623 if ((KMP_TRY_YIELD_OVERSUB)) { \
1624 __kmp_yield(); \
1625 } else if (__kmp_use_yield == 1) { \
1626 (count) -= 2; \
1627 if (!(count)) { \
1628 __kmp_yield(); \
1629 (count) = __kmp_yield_next; \
1630 } \
1631 } \
1632 } \
1633 }
1634#else
1635#define KMP_YIELD_OVERSUB_ELSE_SPIN(count, time) \
1636 { \
1637 KMP_CPU_PAUSE(); \
1638 if ((KMP_TRY_YIELD_OVERSUB)) \
1639 __kmp_yield(); \
1640 else if (__kmp_use_yield == 1) { \
1641 (count) -= 2; \
1642 if (!(count)) { \
1643 __kmp_yield(); \
1644 (count) = __kmp_yield_next; \
1645 } \
1646 } \
1647 }
1648#endif // KMP_HAVE_UMWAIT
1649
1650/* ------------------------------------------------------------------------ */
1651/* Support datatypes for the orphaned construct nesting checks. */
1652/* ------------------------------------------------------------------------ */
1653
1654/* When adding to this enum, add its corresponding string in cons_text_c[]
1655 * array in kmp_error.cpp */
1656enum cons_type {
1657 ct_none,
1658 ct_parallel,
1659 ct_pdo,
1660 ct_pdo_ordered,
1661 ct_psections,
1662 ct_psingle,
1663 ct_critical,
1664 ct_ordered_in_parallel,
1665 ct_ordered_in_pdo,
1666 ct_master,
1667 ct_reduce,
1668 ct_barrier,
1669 ct_masked
1670};
1671
1672#define IS_CONS_TYPE_ORDERED(ct) ((ct) == ct_pdo_ordered)
1673
1674struct cons_data {
1675 ident_t const *ident;
1676 enum cons_type type;
1677 int prev;
1678 kmp_user_lock_p
1679 name; /* address exclusively for critical section name comparison */
1680};
1681
1682struct cons_header {
1683 int p_top, w_top, s_top;
1684 int stack_size, stack_top;
1685 struct cons_data *stack_data;
1686};
1687
1688struct kmp_region_info {
1689 char *text;
1690 int offset[KMP_MAX_FIELDS];
1691 int length[KMP_MAX_FIELDS];
1692};
1693
1694/* ---------------------------------------------------------------------- */
1695/* ---------------------------------------------------------------------- */
1696
1697#if KMP_OS_WINDOWS
1698typedef HANDLE kmp_thread_t;
1699typedef DWORD kmp_key_t;
1700#endif /* KMP_OS_WINDOWS */
1701
1702#if KMP_OS_UNIX
1703typedef pthread_t kmp_thread_t;
1704typedef pthread_key_t kmp_key_t;
1705#endif
1706
1707extern kmp_key_t __kmp_gtid_threadprivate_key;
1708
1709typedef struct kmp_sys_info {
1710 long maxrss; /* the maximum resident set size utilized (in kilobytes) */
1711 long minflt; /* the number of page faults serviced without any I/O */
1712 long majflt; /* the number of page faults serviced that required I/O */
1713 long nswap; /* the number of times a process was "swapped" out of memory */
1714 long inblock; /* the number of times the file system had to perform input */
1715 long oublock; /* the number of times the file system had to perform output */
1716 long nvcsw; /* the number of times a context switch was voluntarily */
1717 long nivcsw; /* the number of times a context switch was forced */
1718} kmp_sys_info_t;
1719
1720#if USE_ITT_BUILD
1721// We cannot include "kmp_itt.h" due to circular dependency. Declare the only
1722// required type here. Later we will check the type meets requirements.
1723typedef int kmp_itt_mark_t;
1724#define KMP_ITT_DEBUG 0
1725#endif /* USE_ITT_BUILD */
1726
1727typedef kmp_int32 kmp_critical_name[8];
1728
1738typedef void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid, ...);
1739typedef void (*kmpc_micro_bound)(kmp_int32 *bound_tid, kmp_int32 *bound_nth,
1740 ...);
1741
1746/* ---------------------------------------------------------------------------
1747 */
1748/* Threadprivate initialization/finalization function declarations */
1749
1750/* for non-array objects: __kmpc_threadprivate_register() */
1751
1756typedef void *(*kmpc_ctor)(void *);
1757
1762typedef void (*kmpc_dtor)(
1763 void * /*, size_t */); /* 2nd arg: magic number for KCC unused by Intel
1764 compiler */
1769typedef void *(*kmpc_cctor)(void *, void *);
1770
1771/* for array objects: __kmpc_threadprivate_register_vec() */
1772/* First arg: "this" pointer */
1773/* Last arg: number of array elements */
1779typedef void *(*kmpc_ctor_vec)(void *, size_t);
1785typedef void (*kmpc_dtor_vec)(void *, size_t);
1791typedef void *(*kmpc_cctor_vec)(void *, void *,
1792 size_t); /* function unused by compiler */
1793
1798/* keeps tracked of threadprivate cache allocations for cleanup later */
1799typedef struct kmp_cached_addr {
1800 void **addr; /* address of allocated cache */
1801 void ***compiler_cache; /* pointer to compiler's cache */
1802 void *data; /* pointer to global data */
1803 struct kmp_cached_addr *next; /* pointer to next cached address */
1804} kmp_cached_addr_t;
1805
1806struct private_data {
1807 struct private_data *next; /* The next descriptor in the list */
1808 void *data; /* The data buffer for this descriptor */
1809 int more; /* The repeat count for this descriptor */
1810 size_t size; /* The data size for this descriptor */
1811};
1812
1813struct private_common {
1814 struct private_common *next;
1815 struct private_common *link;
1816 void *gbl_addr;
1817 void *par_addr; /* par_addr == gbl_addr for PRIMARY thread */
1818 size_t cmn_size;
1819};
1820
1821struct shared_common {
1822 struct shared_common *next;
1823 struct private_data *pod_init;
1824 void *obj_init;
1825 void *gbl_addr;
1826 union {
1827 kmpc_ctor ctor;
1828 kmpc_ctor_vec ctorv;
1829 } ct;
1830 union {
1831 kmpc_cctor cctor;
1832 kmpc_cctor_vec cctorv;
1833 } cct;
1834 union {
1835 kmpc_dtor dtor;
1836 kmpc_dtor_vec dtorv;
1837 } dt;
1838 size_t vec_len;
1839 int is_vec;
1840 size_t cmn_size;
1841};
1842
1843#define KMP_HASH_TABLE_LOG2 9 /* log2 of the hash table size */
1844#define KMP_HASH_TABLE_SIZE \
1845 (1 << KMP_HASH_TABLE_LOG2) /* size of the hash table */
1846#define KMP_HASH_SHIFT 3 /* throw away this many low bits from the address */
1847#define KMP_HASH(x) \
1848 ((((kmp_uintptr_t)x) >> KMP_HASH_SHIFT) & (KMP_HASH_TABLE_SIZE - 1))
1849
1850struct common_table {
1851 struct private_common *data[KMP_HASH_TABLE_SIZE];
1852};
1853
1854struct shared_table {
1855 struct shared_common *data[KMP_HASH_TABLE_SIZE];
1856};
1857
1858/* ------------------------------------------------------------------------ */
1859
1860#if KMP_USE_HIER_SCHED
1861// Shared barrier data that exists inside a single unit of the scheduling
1862// hierarchy
1863typedef struct kmp_hier_private_bdata_t {
1864 kmp_int32 num_active;
1865 kmp_uint64 index;
1866 kmp_uint64 wait_val[2];
1867} kmp_hier_private_bdata_t;
1868#endif
1869
1870typedef struct kmp_sched_flags {
1871 unsigned ordered : 1;
1872 unsigned nomerge : 1;
1873 unsigned contains_last : 1;
1874 unsigned use_hier : 1; // Used in KMP_USE_HIER_SCHED code
1875 unsigned use_hybrid : 1; // Used in KMP_WEIGHTED_ITERATIONS_SUPPORTED code
1876 unsigned unused : 27;
1877} kmp_sched_flags_t;
1878
1879KMP_BUILD_ASSERT(sizeof(kmp_sched_flags_t) == 4);
1880
1881#if KMP_STATIC_STEAL_ENABLED
1882typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1883 kmp_int32 count;
1884 kmp_int32 ub;
1885 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1886 kmp_int32 lb;
1887 kmp_int32 st;
1888 kmp_int32 tc;
1889 kmp_lock_t *steal_lock; // lock used for chunk stealing
1890
1891 kmp_uint32 ordered_lower;
1892 kmp_uint32 ordered_upper;
1893
1894 // KMP_ALIGN(32) ensures (if the KMP_ALIGN macro is turned on)
1895 // a) parm3 is properly aligned and
1896 // b) all parm1-4 are on the same cache line.
1897 // Because of parm1-4 are used together, performance seems to be better
1898 // if they are on the same cache line (not measured though).
1899
1900 struct KMP_ALIGN(32) {
1901 kmp_int32 parm1;
1902 kmp_int32 parm2;
1903 kmp_int32 parm3;
1904 kmp_int32 parm4;
1905 };
1906
1907#if KMP_WEIGHTED_ITERATIONS_SUPPORTED
1908 kmp_uint32 pchunks;
1909 kmp_uint32 num_procs_with_pcore;
1910 kmp_int32 first_thread_with_ecore;
1911#endif
1912#if KMP_OS_WINDOWS
1913 kmp_int32 last_upper;
1914#endif /* KMP_OS_WINDOWS */
1915} dispatch_private_info32_t;
1916
1917#if CACHE_LINE <= 128
1918KMP_BUILD_ASSERT(sizeof(dispatch_private_info32_t) <= 128);
1919#endif
1920
1921typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1922 kmp_int64 count; // current chunk number for static & static-steal scheduling
1923 kmp_int64 ub; /* upper-bound */
1924 /* Adding KMP_ALIGN_CACHE here doesn't help / can hurt performance */
1925 kmp_int64 lb; /* lower-bound */
1926 kmp_int64 st; /* stride */
1927 kmp_int64 tc; /* trip count (number of iterations) */
1928 kmp_lock_t *steal_lock; // lock used for chunk stealing
1929
1930 kmp_uint64 ordered_lower;
1931 kmp_uint64 ordered_upper;
1932 /* parm[1-4] are used in different ways by different scheduling algorithms */
1933
1934 // KMP_ALIGN(32) ensures ( if the KMP_ALIGN macro is turned on )
1935 // a) parm3 is properly aligned and
1936 // b) all parm1-4 are in the same cache line.
1937 // Because of parm1-4 are used together, performance seems to be better
1938 // if they are in the same line (not measured though).
1939 struct KMP_ALIGN(32) {
1940 kmp_int64 parm1;
1941 kmp_int64 parm2;
1942 kmp_int64 parm3;
1943 kmp_int64 parm4;
1944 };
1945
1946#if KMP_WEIGHTED_ITERATIONS_SUPPORTED
1947 kmp_uint64 pchunks;
1948 kmp_uint64 num_procs_with_pcore;
1949 kmp_int64 first_thread_with_ecore;
1950#endif
1951
1952#if KMP_OS_WINDOWS
1953 kmp_int64 last_upper;
1954#endif /* KMP_OS_WINDOWS */
1955} dispatch_private_info64_t;
1956
1957#if CACHE_LINE <= 128
1958KMP_BUILD_ASSERT(sizeof(dispatch_private_info64_t) <= 128);
1959#endif
1960
1961#else /* KMP_STATIC_STEAL_ENABLED */
1962typedef struct KMP_ALIGN_CACHE dispatch_private_info32 {
1963 kmp_int32 lb;
1964 kmp_int32 ub;
1965 kmp_int32 st;
1966 kmp_int32 tc;
1967
1968 kmp_int32 parm1;
1969 kmp_int32 parm2;
1970 kmp_int32 parm3;
1971 kmp_int32 parm4;
1972
1973 kmp_int32 count;
1974
1975 kmp_uint32 ordered_lower;
1976 kmp_uint32 ordered_upper;
1977#if KMP_OS_WINDOWS
1978 kmp_int32 last_upper;
1979#endif /* KMP_OS_WINDOWS */
1980} dispatch_private_info32_t;
1981
1982typedef struct KMP_ALIGN_CACHE dispatch_private_info64 {
1983 kmp_int64 lb; /* lower-bound */
1984 kmp_int64 ub; /* upper-bound */
1985 kmp_int64 st; /* stride */
1986 kmp_int64 tc; /* trip count (number of iterations) */
1987
1988 /* parm[1-4] are used in different ways by different scheduling algorithms */
1989 kmp_int64 parm1;
1990 kmp_int64 parm2;
1991 kmp_int64 parm3;
1992 kmp_int64 parm4;
1993
1994 kmp_int64 count; /* current chunk number for static scheduling */
1995
1996 kmp_uint64 ordered_lower;
1997 kmp_uint64 ordered_upper;
1998#if KMP_OS_WINDOWS
1999 kmp_int64 last_upper;
2000#endif /* KMP_OS_WINDOWS */
2001} dispatch_private_info64_t;
2002#endif /* KMP_STATIC_STEAL_ENABLED */
2003
2004typedef struct KMP_ALIGN_CACHE dispatch_private_info {
2005 union private_info {
2006 dispatch_private_info32_t p32;
2007 dispatch_private_info64_t p64;
2008 } u;
2009 enum sched_type schedule; /* scheduling algorithm */
2010 kmp_sched_flags_t flags; /* flags (e.g., ordered, nomerge, etc.) */
2011 std::atomic<kmp_uint32> steal_flag; // static_steal only, state of a buffer
2012 kmp_int32 ordered_bumped;
2013 // Stack of buffers for nest of serial regions
2014 struct dispatch_private_info *next;
2015 kmp_int32 type_size; /* the size of types in private_info */
2016#if KMP_USE_HIER_SCHED
2017 kmp_int32 hier_id;
2018 void *parent; /* hierarchical scheduling parent pointer */
2019#endif
2020 enum cons_type pushed_ws;
2021} dispatch_private_info_t;
2022
2023typedef struct dispatch_shared_info32 {
2024 /* chunk index under dynamic, number of idle threads under static-steal;
2025 iteration index otherwise */
2026 volatile kmp_uint32 iteration;
2027 volatile kmp_int32 num_done;
2028 volatile kmp_uint32 ordered_iteration;
2029 // Dummy to retain the structure size after making ordered_iteration scalar
2030 kmp_int32 ordered_dummy[KMP_MAX_ORDERED - 1];
2031} dispatch_shared_info32_t;
2032
2033typedef struct dispatch_shared_info64 {
2034 /* chunk index under dynamic, number of idle threads under static-steal;
2035 iteration index otherwise */
2036 volatile kmp_uint64 iteration;
2037 volatile kmp_int64 num_done;
2038 volatile kmp_uint64 ordered_iteration;
2039 // Dummy to retain the structure size after making ordered_iteration scalar
2040 kmp_int64 ordered_dummy[KMP_MAX_ORDERED - 3];
2041} dispatch_shared_info64_t;
2042
2043typedef struct dispatch_shared_info {
2044 union shared_info {
2045 dispatch_shared_info32_t s32;
2046 dispatch_shared_info64_t s64;
2047 } u;
2048 volatile kmp_uint32 buffer_index;
2049 volatile kmp_int32 doacross_buf_idx; // teamwise index
2050 volatile kmp_uint32 *doacross_flags; // shared array of iteration flags (0/1)
2051 kmp_int32 doacross_num_done; // count finished threads
2052#if KMP_USE_HIER_SCHED
2053 void *hier;
2054#endif
2055#if KMP_USE_HWLOC
2056 // When linking with libhwloc, the ORDERED EPCC test slows down on big
2057 // machines (> 48 cores). Performance analysis showed that a cache thrash
2058 // was occurring and this padding helps alleviate the problem.
2059 char padding[64];
2060#endif
2061} dispatch_shared_info_t;
2062
2063typedef struct kmp_disp {
2064 /* Vector for ORDERED SECTION */
2065 void (*th_deo_fcn)(int *gtid, int *cid, ident_t *);
2066 /* Vector for END ORDERED SECTION */
2067 void (*th_dxo_fcn)(int *gtid, int *cid, ident_t *);
2068
2069 dispatch_shared_info_t *th_dispatch_sh_current;
2070 dispatch_private_info_t *th_dispatch_pr_current;
2071
2072 dispatch_private_info_t *th_disp_buffer;
2073 kmp_uint32 th_disp_index;
2074 kmp_int32 th_doacross_buf_idx; // thread's doacross buffer index
2075 volatile kmp_uint32 *th_doacross_flags; // pointer to shared array of flags
2076 kmp_int64 *th_doacross_info; // info on loop bounds
2077#if KMP_USE_INTERNODE_ALIGNMENT
2078 char more_padding[INTERNODE_CACHE_LINE];
2079#endif
2080} kmp_disp_t;
2081
2082/* ------------------------------------------------------------------------ */
2083/* Barrier stuff */
2084
2085/* constants for barrier state update */
2086#define KMP_INIT_BARRIER_STATE 0 /* should probably start from zero */
2087#define KMP_BARRIER_SLEEP_BIT 0 /* bit used for suspend/sleep part of state */
2088#define KMP_BARRIER_UNUSED_BIT 1 // bit that must never be set for valid state
2089#define KMP_BARRIER_BUMP_BIT 2 /* lsb used for bump of go/arrived state */
2090
2091#define KMP_BARRIER_SLEEP_STATE (1 << KMP_BARRIER_SLEEP_BIT)
2092#define KMP_BARRIER_UNUSED_STATE (1 << KMP_BARRIER_UNUSED_BIT)
2093#define KMP_BARRIER_STATE_BUMP (1 << KMP_BARRIER_BUMP_BIT)
2094
2095#if (KMP_BARRIER_SLEEP_BIT >= KMP_BARRIER_BUMP_BIT)
2096#error "Barrier sleep bit must be smaller than barrier bump bit"
2097#endif
2098#if (KMP_BARRIER_UNUSED_BIT >= KMP_BARRIER_BUMP_BIT)
2099#error "Barrier unused bit must be smaller than barrier bump bit"
2100#endif
2101
2102// Constants for release barrier wait state: currently, hierarchical only
2103#define KMP_BARRIER_NOT_WAITING 0 // Normal state; worker not in wait_sleep
2104#define KMP_BARRIER_OWN_FLAG \
2105 1 // Normal state; worker waiting on own b_go flag in release
2106#define KMP_BARRIER_PARENT_FLAG \
2107 2 // Special state; worker waiting on parent's b_go flag in release
2108#define KMP_BARRIER_SWITCH_TO_OWN_FLAG \
2109 3 // Special state; tells worker to shift from parent to own b_go
2110#define KMP_BARRIER_SWITCHING \
2111 4 // Special state; worker resets appropriate flag on wake-up
2112
2113#define KMP_NOT_SAFE_TO_REAP \
2114 0 // Thread th_reap_state: not safe to reap (tasking)
2115#define KMP_SAFE_TO_REAP 1 // Thread th_reap_state: safe to reap (not tasking)
2116
2117// The flag_type describes the storage used for the flag.
2118enum flag_type {
2119 flag32,
2120 flag64,
2121 atomic_flag64,
2122 flag_oncore,
2123 flag_unset
2124};
2125
2126enum barrier_type {
2127 bs_plain_barrier = 0, /* 0, All non-fork/join barriers (except reduction
2128 barriers if enabled) */
2129 bs_forkjoin_barrier, /* 1, All fork/join (parallel region) barriers */
2130#if KMP_FAST_REDUCTION_BARRIER
2131 bs_reduction_barrier, /* 2, All barriers that are used in reduction */
2132#endif // KMP_FAST_REDUCTION_BARRIER
2133 bs_last_barrier /* Just a placeholder to mark the end */
2134};
2135
2136// to work with reduction barriers just like with plain barriers
2137#if !KMP_FAST_REDUCTION_BARRIER
2138#define bs_reduction_barrier bs_plain_barrier
2139#endif // KMP_FAST_REDUCTION_BARRIER
2140
2141typedef enum kmp_bar_pat { /* Barrier communication patterns */
2142 bp_linear_bar =
2143 0, /* Single level (degenerate) tree */
2144 bp_tree_bar =
2145 1, /* Balanced tree with branching factor 2^n */
2146 bp_hyper_bar = 2, /* Hypercube-embedded tree with min
2147 branching factor 2^n */
2148 bp_hierarchical_bar = 3, /* Machine hierarchy tree */
2149 bp_dist_bar = 4, /* Distributed barrier */
2150 bp_last_bar /* Placeholder to mark the end */
2151} kmp_bar_pat_e;
2152
2153#define KMP_BARRIER_ICV_PUSH 1
2154
2155/* Record for holding the values of the internal controls stack records */
2156typedef struct kmp_internal_control {
2157 int serial_nesting_level; /* corresponds to the value of the
2158 th_team_serialized field */
2159 kmp_int8 dynamic; /* internal control for dynamic adjustment of threads (per
2160 thread) */
2161 kmp_int8
2162 bt_set; /* internal control for whether blocktime is explicitly set */
2163 int blocktime; /* internal control for blocktime */
2164#if KMP_USE_MONITOR
2165 int bt_intervals; /* internal control for blocktime intervals */
2166#endif
2167 int nproc; /* internal control for #threads for next parallel region (per
2168 thread) */
2169 int thread_limit; /* internal control for thread-limit-var */
2170 int task_thread_limit; /* internal control for thread-limit-var of a task*/
2171 int max_active_levels; /* internal control for max_active_levels */
2172 kmp_r_sched_t
2173 sched; /* internal control for runtime schedule {sched,chunk} pair */
2174 kmp_proc_bind_t proc_bind; /* internal control for affinity */
2175 kmp_int32 default_device; /* internal control for default device */
2176 struct kmp_internal_control *next;
2177} kmp_internal_control_t;
2178
2179static inline void copy_icvs(kmp_internal_control_t *dst,
2180 kmp_internal_control_t *src) {
2181 *dst = *src;
2182}
2183
2184/* Thread barrier needs volatile barrier fields */
2185typedef struct KMP_ALIGN_CACHE kmp_bstate {
2186 // th_fixed_icvs is aligned by virtue of kmp_bstate being aligned (and all
2187 // uses of it). It is not explicitly aligned below, because we *don't* want
2188 // it to be padded -- instead, we fit b_go into the same cache line with
2189 // th_fixed_icvs, enabling NGO cache lines stores in the hierarchical barrier.
2190 kmp_internal_control_t th_fixed_icvs; // Initial ICVs for the thread
2191 // Tuck b_go into end of th_fixed_icvs cache line, so it can be stored with
2192 // same NGO store
2193 volatile kmp_uint64 b_go; // STATE => task should proceed (hierarchical)
2194 KMP_ALIGN_CACHE volatile kmp_uint64
2195 b_arrived; // STATE => task reached synch point.
2196 kmp_uint32 *skip_per_level;
2197 kmp_uint32 my_level;
2198 kmp_int32 parent_tid;
2199 kmp_int32 old_tid;
2200 kmp_uint32 depth;
2201 struct kmp_bstate *parent_bar;
2202 kmp_team_t *team;
2203 kmp_uint64 leaf_state;
2204 kmp_uint32 nproc;
2205 kmp_uint8 base_leaf_kids;
2206 kmp_uint8 leaf_kids;
2207 kmp_uint8 offset;
2208 kmp_uint8 wait_flag;
2209 kmp_uint8 use_oncore_barrier;
2210#if USE_DEBUGGER
2211 // The following field is intended for the debugger solely. Only the worker
2212 // thread itself accesses this field: the worker increases it by 1 when it
2213 // arrives to a barrier.
2214 KMP_ALIGN_CACHE kmp_uint b_worker_arrived;
2215#endif /* USE_DEBUGGER */
2216} kmp_bstate_t;
2217
2218union KMP_ALIGN_CACHE kmp_barrier_union {
2219 double b_align; /* use worst case alignment */
2220 char b_pad[KMP_PAD(kmp_bstate_t, CACHE_LINE)];
2221 kmp_bstate_t bb;
2222};
2223
2224typedef union kmp_barrier_union kmp_balign_t;
2225
2226/* Team barrier needs only non-volatile arrived counter */
2227union KMP_ALIGN_CACHE kmp_barrier_team_union {
2228 double b_align; /* use worst case alignment */
2229 char b_pad[CACHE_LINE];
2230 struct {
2231 kmp_uint64 b_arrived; /* STATE => task reached synch point. */
2232#if USE_DEBUGGER
2233 // The following two fields are indended for the debugger solely. Only
2234 // primary thread of the team accesses these fields: the first one is
2235 // increased by 1 when the primary thread arrives to a barrier, the second
2236 // one is increased by one when all the threads arrived.
2237 kmp_uint b_master_arrived;
2238 kmp_uint b_team_arrived;
2239#endif
2240 };
2241};
2242
2243typedef union kmp_barrier_team_union kmp_balign_team_t;
2244
2245/* Padding for Linux* OS pthreads condition variables and mutexes used to signal
2246 threads when a condition changes. This is to workaround an NPTL bug where
2247 padding was added to pthread_cond_t which caused the initialization routine
2248 to write outside of the structure if compiled on pre-NPTL threads. */
2249#if KMP_OS_WINDOWS
2250typedef struct kmp_win32_mutex {
2251 /* The Lock */
2252 CRITICAL_SECTION cs;
2253} kmp_win32_mutex_t;
2254
2255typedef struct kmp_win32_cond {
2256 /* Count of the number of waiters. */
2257 int waiters_count_;
2258
2259 /* Serialize access to <waiters_count_> */
2260 kmp_win32_mutex_t waiters_count_lock_;
2261
2262 /* Number of threads to release via a <cond_broadcast> or a <cond_signal> */
2263 int release_count_;
2264
2265 /* Keeps track of the current "generation" so that we don't allow */
2266 /* one thread to steal all the "releases" from the broadcast. */
2267 int wait_generation_count_;
2268
2269 /* A manual-reset event that's used to block and release waiting threads. */
2270 HANDLE event_;
2271} kmp_win32_cond_t;
2272#endif
2273
2274#if KMP_OS_UNIX
2275
2276union KMP_ALIGN_CACHE kmp_cond_union {
2277 double c_align;
2278 char c_pad[CACHE_LINE];
2279 pthread_cond_t c_cond;
2280};
2281
2282typedef union kmp_cond_union kmp_cond_align_t;
2283
2284union KMP_ALIGN_CACHE kmp_mutex_union {
2285 double m_align;
2286 char m_pad[CACHE_LINE];
2287 pthread_mutex_t m_mutex;
2288};
2289
2290typedef union kmp_mutex_union kmp_mutex_align_t;
2291
2292#endif /* KMP_OS_UNIX */
2293
2294typedef struct kmp_desc_base {
2295 void *ds_stackbase;
2296 size_t ds_stacksize;
2297 int ds_stackgrow;
2298 kmp_thread_t ds_thread;
2299 volatile int ds_tid;
2300 int ds_gtid;
2301#if KMP_OS_WINDOWS
2302 volatile int ds_alive;
2303 DWORD ds_thread_id;
2304/* ds_thread keeps thread handle on Windows* OS. It is enough for RTL purposes.
2305 However, debugger support (libomp_db) cannot work with handles, because they
2306 uncomparable. For example, debugger requests info about thread with handle h.
2307 h is valid within debugger process, and meaningless within debugee process.
2308 Even if h is duped by call to DuplicateHandle(), so the result h' is valid
2309 within debugee process, but it is a *new* handle which does *not* equal to
2310 any other handle in debugee... The only way to compare handles is convert
2311 them to system-wide ids. GetThreadId() function is available only in
2312 Longhorn and Server 2003. :-( In contrast, GetCurrentThreadId() is available
2313 on all Windows* OS flavours (including Windows* 95). Thus, we have to get
2314 thread id by call to GetCurrentThreadId() from within the thread and save it
2315 to let libomp_db identify threads. */
2316#endif /* KMP_OS_WINDOWS */
2317} kmp_desc_base_t;
2318
2319typedef union KMP_ALIGN_CACHE kmp_desc {
2320 double ds_align; /* use worst case alignment */
2321 char ds_pad[KMP_PAD(kmp_desc_base_t, CACHE_LINE)];
2322 kmp_desc_base_t ds;
2323} kmp_desc_t;
2324
2325typedef struct kmp_local {
2326 volatile int this_construct; /* count of single's encountered by thread */
2327 void *reduce_data;
2328#if KMP_USE_BGET
2329 void *bget_data;
2330 void *bget_list;
2331#if !USE_CMP_XCHG_FOR_BGET
2332#ifdef USE_QUEUING_LOCK_FOR_BGET
2333 kmp_lock_t bget_lock; /* Lock for accessing bget free list */
2334#else
2335 kmp_bootstrap_lock_t bget_lock; // Lock for accessing bget free list. Must be
2336// bootstrap lock so we can use it at library
2337// shutdown.
2338#endif /* USE_LOCK_FOR_BGET */
2339#endif /* ! USE_CMP_XCHG_FOR_BGET */
2340#endif /* KMP_USE_BGET */
2341
2342 PACKED_REDUCTION_METHOD_T
2343 packed_reduction_method; /* stored by __kmpc_reduce*(), used by
2344 __kmpc_end_reduce*() */
2345
2346} kmp_local_t;
2347
2348#define KMP_CHECK_UPDATE(a, b) \
2349 if ((a) != (b)) \
2350 (a) = (b)
2351#define KMP_CHECK_UPDATE_SYNC(a, b) \
2352 if ((a) != (b)) \
2353 TCW_SYNC_PTR((a), (b))
2354
2355#define get__blocktime(xteam, xtid) \
2356 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime)
2357#define get__bt_set(xteam, xtid) \
2358 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set)
2359#if KMP_USE_MONITOR
2360#define get__bt_intervals(xteam, xtid) \
2361 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals)
2362#endif
2363
2364#define get__dynamic_2(xteam, xtid) \
2365 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.dynamic)
2366#define get__nproc_2(xteam, xtid) \
2367 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.nproc)
2368#define get__sched_2(xteam, xtid) \
2369 ((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.sched)
2370
2371#define set__blocktime_team(xteam, xtid, xval) \
2372 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.blocktime) = \
2373 (xval))
2374
2375#if KMP_USE_MONITOR
2376#define set__bt_intervals_team(xteam, xtid, xval) \
2377 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_intervals) = \
2378 (xval))
2379#endif
2380
2381#define set__bt_set_team(xteam, xtid, xval) \
2382 (((xteam)->t.t_threads[(xtid)]->th.th_current_task->td_icvs.bt_set) = (xval))
2383
2384#define set__dynamic(xthread, xval) \
2385 (((xthread)->th.th_current_task->td_icvs.dynamic) = (xval))
2386#define get__dynamic(xthread) \
2387 (((xthread)->th.th_current_task->td_icvs.dynamic) ? (FTN_TRUE) : (FTN_FALSE))
2388
2389#define set__nproc(xthread, xval) \
2390 (((xthread)->th.th_current_task->td_icvs.nproc) = (xval))
2391
2392#define set__thread_limit(xthread, xval) \
2393 (((xthread)->th.th_current_task->td_icvs.thread_limit) = (xval))
2394
2395#define set__max_active_levels(xthread, xval) \
2396 (((xthread)->th.th_current_task->td_icvs.max_active_levels) = (xval))
2397
2398#define get__max_active_levels(xthread) \
2399 ((xthread)->th.th_current_task->td_icvs.max_active_levels)
2400
2401#define set__sched(xthread, xval) \
2402 (((xthread)->th.th_current_task->td_icvs.sched) = (xval))
2403
2404#define set__proc_bind(xthread, xval) \
2405 (((xthread)->th.th_current_task->td_icvs.proc_bind) = (xval))
2406#define get__proc_bind(xthread) \
2407 ((xthread)->th.th_current_task->td_icvs.proc_bind)
2408
2409// OpenMP tasking data structures
2410
2411typedef enum kmp_tasking_mode {
2412 tskm_immediate_exec = 0,
2413 tskm_extra_barrier = 1,
2414 tskm_task_teams = 2,
2415 tskm_max = 2
2416} kmp_tasking_mode_t;
2417
2418extern kmp_tasking_mode_t
2419 __kmp_tasking_mode; /* determines how/when to execute tasks */
2420extern int __kmp_task_stealing_constraint;
2421extern int __kmp_enable_task_throttling;
2422extern kmp_int32 __kmp_default_device; // Set via OMP_DEFAULT_DEVICE if
2423// specified, defaults to 0 otherwise
2424// Set via OMP_MAX_TASK_PRIORITY if specified, defaults to 0 otherwise
2425extern kmp_int32 __kmp_max_task_priority;
2426// Set via KMP_TASKLOOP_MIN_TASKS if specified, defaults to 0 otherwise
2427extern kmp_uint64 __kmp_taskloop_min_tasks;
2428
2429/* NOTE: kmp_taskdata_t and kmp_task_t structures allocated in single block with
2430 taskdata first */
2431#define KMP_TASK_TO_TASKDATA(task) (((kmp_taskdata_t *)task) - 1)
2432#define KMP_TASKDATA_TO_TASK(taskdata) (kmp_task_t *)(taskdata + 1)
2433
2434// The tt_found_tasks flag is a signal to all threads in the team that tasks
2435// were spawned and queued since the previous barrier release.
2436#define KMP_TASKING_ENABLED(task_team) \
2437 (TRUE == TCR_SYNC_4((task_team)->tt.tt_found_tasks))
2445typedef kmp_int32 (*kmp_routine_entry_t)(kmp_int32, void *);
2446
2447typedef union kmp_cmplrdata {
2448 kmp_int32 priority;
2449 kmp_routine_entry_t
2450 destructors; /* pointer to function to invoke deconstructors of
2451 firstprivate C++ objects */
2452 /* future data */
2453} kmp_cmplrdata_t;
2454
2455/* sizeof_kmp_task_t passed as arg to kmpc_omp_task call */
2458typedef struct kmp_task { /* GEH: Shouldn't this be aligned somehow? */
2459 void *shareds;
2460 kmp_routine_entry_t
2461 routine;
2462 kmp_int32 part_id;
2463 kmp_cmplrdata_t
2464 data1; /* Two known optional additions: destructors and priority */
2465 kmp_cmplrdata_t data2; /* Process destructors first, priority second */
2466 /* future data */
2467 /* private vars */
2468} kmp_task_t;
2469
2474typedef struct kmp_taskgroup {
2475 std::atomic<kmp_int32> count; // number of allocated and incomplete tasks
2476 std::atomic<kmp_int32>
2477 cancel_request; // request for cancellation of this taskgroup
2478 struct kmp_taskgroup *parent; // parent taskgroup
2479 // Block of data to perform task reduction
2480 void *reduce_data; // reduction related info
2481 kmp_int32 reduce_num_data; // number of data items to reduce
2482 uintptr_t *gomp_data; // gomp reduction data
2483} kmp_taskgroup_t;
2484
2485// forward declarations
2486typedef union kmp_depnode kmp_depnode_t;
2487typedef struct kmp_depnode_list kmp_depnode_list_t;
2488typedef struct kmp_dephash_entry kmp_dephash_entry_t;
2489
2490// macros for checking dep flag as an integer
2491#define KMP_DEP_IN 0x1
2492#define KMP_DEP_OUT 0x2
2493#define KMP_DEP_INOUT 0x3
2494#define KMP_DEP_MTX 0x4
2495#define KMP_DEP_SET 0x8
2496#define KMP_DEP_ALL 0x80
2497// Compiler sends us this info:
2498typedef struct kmp_depend_info {
2499 kmp_intptr_t base_addr;
2500 size_t len;
2501 union {
2502 kmp_uint8 flag; // flag as an unsigned char
2503 struct { // flag as a set of 8 bits
2504#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
2505 /* Same fields as in the #else branch, but in reverse order */
2506 unsigned all : 1;
2507 unsigned unused : 3;
2508 unsigned set : 1;
2509 unsigned mtx : 1;
2510 unsigned out : 1;
2511 unsigned in : 1;
2512#else
2513 unsigned in : 1;
2514 unsigned out : 1;
2515 unsigned mtx : 1;
2516 unsigned set : 1;
2517 unsigned unused : 3;
2518 unsigned all : 1;
2519#endif
2520 } flags;
2521 };
2522} kmp_depend_info_t;
2523
2524// Internal structures to work with task dependencies:
2525struct kmp_depnode_list {
2526 kmp_depnode_t *node;
2527 kmp_depnode_list_t *next;
2528};
2529
2530// Max number of mutexinoutset dependencies per node
2531#define MAX_MTX_DEPS 4
2532
2533typedef struct kmp_base_depnode {
2534 kmp_depnode_list_t *successors; /* used under lock */
2535 kmp_task_t *task; /* non-NULL if depnode is active, used under lock */
2536 kmp_lock_t *mtx_locks[MAX_MTX_DEPS]; /* lock mutexinoutset dependent tasks */
2537 kmp_int32 mtx_num_locks; /* number of locks in mtx_locks array */
2538 kmp_lock_t lock; /* guards shared fields: task, successors */
2539#if KMP_SUPPORT_GRAPH_OUTPUT
2540 kmp_uint32 id;
2541#endif
2542 std::atomic<kmp_int32> npredecessors;
2543 std::atomic<kmp_int32> nrefs;
2544} kmp_base_depnode_t;
2545
2546union KMP_ALIGN_CACHE kmp_depnode {
2547 double dn_align; /* use worst case alignment */
2548 char dn_pad[KMP_PAD(kmp_base_depnode_t, CACHE_LINE)];
2549 kmp_base_depnode_t dn;
2550};
2551
2552struct kmp_dephash_entry {
2553 kmp_intptr_t addr;
2554 kmp_depnode_t *last_out;
2555 kmp_depnode_list_t *last_set;
2556 kmp_depnode_list_t *prev_set;
2557 kmp_uint8 last_flag;
2558 kmp_lock_t *mtx_lock; /* is referenced by depnodes w/mutexinoutset dep */
2559 kmp_dephash_entry_t *next_in_bucket;
2560};
2561
2562typedef struct kmp_dephash {
2563 kmp_dephash_entry_t **buckets;
2564 size_t size;
2565 kmp_depnode_t *last_all;
2566 size_t generation;
2567 kmp_uint32 nelements;
2568 kmp_uint32 nconflicts;
2569} kmp_dephash_t;
2570
2571typedef struct kmp_task_affinity_info {
2572 kmp_intptr_t base_addr;
2573 size_t len;
2574 struct {
2575 bool flag1 : 1;
2576 bool flag2 : 1;
2577 kmp_int32 reserved : 30;
2578 } flags;
2579} kmp_task_affinity_info_t;
2580
2581typedef enum kmp_event_type_t {
2582 KMP_EVENT_UNINITIALIZED = 0,
2583 KMP_EVENT_ALLOW_COMPLETION = 1
2584} kmp_event_type_t;
2585
2586typedef struct {
2587 kmp_event_type_t type;
2588 kmp_tas_lock_t lock;
2589 union {
2590 kmp_task_t *task;
2591 } ed;
2592} kmp_event_t;
2593
2594#if OMPX_TASKGRAPH
2595// Initial number of allocated nodes while recording
2596#define INIT_MAPSIZE 50
2597
2598typedef struct kmp_taskgraph_flags { /*This needs to be exactly 32 bits */
2599 unsigned nowait : 1;
2600 unsigned re_record : 1;
2601 unsigned reserved : 30;
2602} kmp_taskgraph_flags_t;
2603
2605typedef struct kmp_node_info {
2606 kmp_task_t *task; // Pointer to the actual task
2607 kmp_int32 *successors; // Array of the succesors ids
2608 kmp_int32 nsuccessors; // Number of succesors of the node
2609 std::atomic<kmp_int32>
2610 npredecessors_counter; // Number of predessors on the fly
2611 kmp_int32 npredecessors; // Total number of predecessors
2612 kmp_int32 successors_size; // Number of allocated succesors ids
2613 kmp_taskdata_t *parent_task; // Parent implicit task
2614} kmp_node_info_t;
2615
2617typedef enum kmp_tdg_status {
2618 KMP_TDG_NONE = 0,
2619 KMP_TDG_RECORDING = 1,
2620 KMP_TDG_READY = 2
2621} kmp_tdg_status_t;
2622
2624typedef struct kmp_tdg_info {
2625 kmp_int32 tdg_id; // Unique idenfifier of the TDG
2626 kmp_taskgraph_flags_t tdg_flags; // Flags related to a TDG
2627 kmp_int32 map_size; // Number of allocated TDG nodes
2628 kmp_int32 num_roots; // Number of roots tasks int the TDG
2629 kmp_int32 *root_tasks; // Array of tasks identifiers that are roots
2630 kmp_node_info_t *record_map; // Array of TDG nodes
2631 kmp_tdg_status_t tdg_status =
2632 KMP_TDG_NONE; // Status of the TDG (recording, ready...)
2633 std::atomic<kmp_int32> num_tasks; // Number of TDG nodes
2634 kmp_bootstrap_lock_t
2635 graph_lock; // Protect graph attributes when updated via taskloop_recur
2636 // Taskloop reduction related
2637 void *rec_taskred_data; // Data to pass to __kmpc_task_reduction_init or
2638 // __kmpc_taskred_init
2639 kmp_int32 rec_num_taskred;
2640} kmp_tdg_info_t;
2641
2642extern int __kmp_tdg_dot;
2643extern kmp_int32 __kmp_max_tdgs;
2644extern kmp_tdg_info_t **__kmp_global_tdgs;
2645extern kmp_int32 __kmp_curr_tdg_idx;
2646extern kmp_int32 __kmp_successors_size;
2647extern std::atomic<kmp_int32> __kmp_tdg_task_id;
2648extern kmp_int32 __kmp_num_tdg;
2649#endif
2650
2651#ifdef BUILD_TIED_TASK_STACK
2652
2653/* Tied Task stack definitions */
2654typedef struct kmp_stack_block {
2655 kmp_taskdata_t *sb_block[TASK_STACK_BLOCK_SIZE];
2656 struct kmp_stack_block *sb_next;
2657 struct kmp_stack_block *sb_prev;
2658} kmp_stack_block_t;
2659
2660typedef struct kmp_task_stack {
2661 kmp_stack_block_t ts_first_block; // first block of stack entries
2662 kmp_taskdata_t **ts_top; // pointer to the top of stack
2663 kmp_int32 ts_entries; // number of entries on the stack
2664} kmp_task_stack_t;
2665
2666#endif // BUILD_TIED_TASK_STACK
2667
2668typedef struct kmp_tasking_flags { /* Total struct must be exactly 32 bits */
2669#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
2670 /* Same fields as in the #else branch, but in reverse order */
2671#if OMPX_TASKGRAPH
2672 unsigned reserved31 : 6;
2673 unsigned onced : 1;
2674#else
2675 unsigned reserved31 : 7;
2676#endif
2677 unsigned native : 1;
2678 unsigned freed : 1;
2679 unsigned complete : 1;
2680 unsigned executing : 1;
2681 unsigned started : 1;
2682 unsigned team_serial : 1;
2683 unsigned tasking_ser : 1;
2684 unsigned task_serial : 1;
2685 unsigned tasktype : 1;
2686 unsigned reserved : 8;
2687 unsigned hidden_helper : 1;
2688 unsigned detachable : 1;
2689 unsigned priority_specified : 1;
2690 unsigned proxy : 1;
2691 unsigned destructors_thunk : 1;
2692 unsigned merged_if0 : 1;
2693 unsigned final : 1;
2694 unsigned tiedness : 1;
2695#else
2696 /* Compiler flags */ /* Total compiler flags must be 16 bits */
2697 unsigned tiedness : 1; /* task is either tied (1) or untied (0) */
2698 unsigned final : 1; /* task is final(1) so execute immediately */
2699 unsigned merged_if0 : 1; /* no __kmpc_task_{begin/complete}_if0 calls in if0
2700 code path */
2701 unsigned destructors_thunk : 1; /* set if the compiler creates a thunk to
2702 invoke destructors from the runtime */
2703 unsigned proxy : 1; /* task is a proxy task (it will be executed outside the
2704 context of the RTL) */
2705 unsigned priority_specified : 1; /* set if the compiler provides priority
2706 setting for the task */
2707 unsigned detachable : 1; /* 1 == can detach */
2708 unsigned hidden_helper : 1; /* 1 == hidden helper task */
2709 unsigned reserved : 8; /* reserved for compiler use */
2710
2711 /* Library flags */ /* Total library flags must be 16 bits */
2712 unsigned tasktype : 1; /* task is either explicit(1) or implicit (0) */
2713 unsigned task_serial : 1; // task is executed immediately (1) or deferred (0)
2714 unsigned tasking_ser : 1; // all tasks in team are either executed immediately
2715 // (1) or may be deferred (0)
2716 unsigned team_serial : 1; // entire team is serial (1) [1 thread] or parallel
2717 // (0) [>= 2 threads]
2718 /* If either team_serial or tasking_ser is set, task team may be NULL */
2719 /* Task State Flags: */
2720 unsigned started : 1; /* 1==started, 0==not started */
2721 unsigned executing : 1; /* 1==executing, 0==not executing */
2722 unsigned complete : 1; /* 1==complete, 0==not complete */
2723 unsigned freed : 1; /* 1==freed, 0==allocated */
2724 unsigned native : 1; /* 1==gcc-compiled task, 0==intel */
2725#if OMPX_TASKGRAPH
2726 unsigned onced : 1; /* 1==ran once already, 0==never ran, record & replay purposes */
2727 unsigned reserved31 : 6; /* reserved for library use */
2728#else
2729 unsigned reserved31 : 7; /* reserved for library use */
2730#endif
2731#endif
2732} kmp_tasking_flags_t;
2733
2734typedef struct kmp_target_data {
2735 void *async_handle; // libomptarget async handle for task completion query
2736} kmp_target_data_t;
2737
2738struct kmp_taskdata { /* aligned during dynamic allocation */
2739 kmp_int32 td_task_id; /* id, assigned by debugger */
2740 kmp_tasking_flags_t td_flags; /* task flags */
2741 kmp_team_t *td_team; /* team for this task */
2742 kmp_info_p *td_alloc_thread; /* thread that allocated data structures */
2743 /* Currently not used except for perhaps IDB */
2744 kmp_taskdata_t *td_parent; /* parent task */
2745 kmp_int32 td_level; /* task nesting level */
2746 std::atomic<kmp_int32> td_untied_count; // untied task active parts counter
2747 ident_t *td_ident; /* task identifier */
2748 // Taskwait data.
2749 ident_t *td_taskwait_ident;
2750 kmp_uint32 td_taskwait_counter;
2751 kmp_int32 td_taskwait_thread; /* gtid + 1 of thread encountered taskwait */
2752 KMP_ALIGN_CACHE kmp_internal_control_t
2753 td_icvs; /* Internal control variables for the task */
2754 KMP_ALIGN_CACHE std::atomic<kmp_int32>
2755 td_allocated_child_tasks; /* Child tasks (+ current task) not yet
2756 deallocated */
2757 std::atomic<kmp_int32>
2758 td_incomplete_child_tasks; /* Child tasks not yet complete */
2759 kmp_taskgroup_t
2760 *td_taskgroup; // Each task keeps pointer to its current taskgroup
2761 kmp_dephash_t
2762 *td_dephash; // Dependencies for children tasks are tracked from here
2763 kmp_depnode_t
2764 *td_depnode; // Pointer to graph node if this task has dependencies
2765 kmp_task_team_t *td_task_team;
2766 size_t td_size_alloc; // Size of task structure, including shareds etc.
2767#if defined(KMP_GOMP_COMPAT)
2768 // 4 or 8 byte integers for the loop bounds in GOMP_taskloop
2769 kmp_int32 td_size_loop_bounds;
2770#endif
2771 kmp_taskdata_t *td_last_tied; // keep tied task for task scheduling constraint
2772#if defined(KMP_GOMP_COMPAT)
2773 // GOMP sends in a copy function for copy constructors
2774 void (*td_copy_func)(void *, void *);
2775#endif
2776 kmp_event_t td_allow_completion_event;
2777#if OMPT_SUPPORT
2778 ompt_task_info_t ompt_task_info;
2779#endif
2780#if OMPX_TASKGRAPH
2781 bool is_taskgraph = 0; // whether the task is within a TDG
2782 kmp_tdg_info_t *tdg; // used to associate task with a TDG
2783#endif
2784 kmp_target_data_t td_target_data;
2785}; // struct kmp_taskdata
2786
2787// Make sure padding above worked
2788KMP_BUILD_ASSERT(sizeof(kmp_taskdata_t) % sizeof(void *) == 0);
2789
2790// Data for task team but per thread
2791typedef struct kmp_base_thread_data {
2792 kmp_info_p *td_thr; // Pointer back to thread info
2793 // Used only in __kmp_execute_tasks_template, maybe not avail until task is
2794 // queued?
2795 kmp_bootstrap_lock_t td_deque_lock; // Lock for accessing deque
2796 kmp_taskdata_t *
2797 *td_deque; // Deque of tasks encountered by td_thr, dynamically allocated
2798 kmp_int32 td_deque_size; // Size of deck
2799 kmp_uint32 td_deque_head; // Head of deque (will wrap)
2800 kmp_uint32 td_deque_tail; // Tail of deque (will wrap)
2801 kmp_int32 td_deque_ntasks; // Number of tasks in deque
2802 // GEH: shouldn't this be volatile since used in while-spin?
2803 kmp_int32 td_deque_last_stolen; // Thread number of last successful steal
2804#ifdef BUILD_TIED_TASK_STACK
2805 kmp_task_stack_t td_susp_tied_tasks; // Stack of suspended tied tasks for task
2806// scheduling constraint
2807#endif // BUILD_TIED_TASK_STACK
2808} kmp_base_thread_data_t;
2809
2810#define TASK_DEQUE_BITS 8 // Used solely to define INITIAL_TASK_DEQUE_SIZE
2811#define INITIAL_TASK_DEQUE_SIZE (1 << TASK_DEQUE_BITS)
2812
2813#define TASK_DEQUE_SIZE(td) ((td).td_deque_size)
2814#define TASK_DEQUE_MASK(td) ((td).td_deque_size - 1)
2815
2816typedef union KMP_ALIGN_CACHE kmp_thread_data {
2817 kmp_base_thread_data_t td;
2818 double td_align; /* use worst case alignment */
2819 char td_pad[KMP_PAD(kmp_base_thread_data_t, CACHE_LINE)];
2820} kmp_thread_data_t;
2821
2822typedef struct kmp_task_pri {
2823 kmp_thread_data_t td;
2824 kmp_int32 priority;
2825 kmp_task_pri *next;
2826} kmp_task_pri_t;
2827
2828// Data for task teams which are used when tasking is enabled for the team
2829typedef struct kmp_base_task_team {
2830 kmp_bootstrap_lock_t
2831 tt_threads_lock; /* Lock used to allocate per-thread part of task team */
2832 /* must be bootstrap lock since used at library shutdown*/
2833
2834 // TODO: check performance vs kmp_tas_lock_t
2835 kmp_bootstrap_lock_t tt_task_pri_lock; /* Lock to access priority tasks */
2836 kmp_task_pri_t *tt_task_pri_list;
2837
2838 kmp_task_team_t *tt_next; /* For linking the task team free list */
2839 kmp_thread_data_t
2840 *tt_threads_data; /* Array of per-thread structures for task team */
2841 /* Data survives task team deallocation */
2842 kmp_int32 tt_found_tasks; /* Have we found tasks and queued them while
2843 executing this team? */
2844 /* TRUE means tt_threads_data is set up and initialized */
2845 kmp_int32 tt_nproc; /* #threads in team */
2846 kmp_int32 tt_max_threads; // # entries allocated for threads_data array
2847 kmp_int32 tt_found_proxy_tasks; // found proxy tasks since last barrier
2848 kmp_int32 tt_untied_task_encountered;
2849 std::atomic<kmp_int32> tt_num_task_pri; // number of priority tasks enqueued
2850 // There is hidden helper thread encountered in this task team so that we must
2851 // wait when waiting on task team
2852 kmp_int32 tt_hidden_helper_task_encountered;
2853
2854 KMP_ALIGN_CACHE
2855 std::atomic<kmp_int32> tt_unfinished_threads; /* #threads still active */
2856
2857 KMP_ALIGN_CACHE
2858 volatile kmp_uint32
2859 tt_active; /* is the team still actively executing tasks */
2860} kmp_base_task_team_t;
2861
2862union KMP_ALIGN_CACHE kmp_task_team {
2863 kmp_base_task_team_t tt;
2864 double tt_align; /* use worst case alignment */
2865 char tt_pad[KMP_PAD(kmp_base_task_team_t, CACHE_LINE)];
2866};
2867
2868#if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
2869// Free lists keep same-size free memory slots for fast memory allocation
2870// routines
2871typedef struct kmp_free_list {
2872 void *th_free_list_self; // Self-allocated tasks free list
2873 void *th_free_list_sync; // Self-allocated tasks stolen/returned by other
2874 // threads
2875 void *th_free_list_other; // Non-self free list (to be returned to owner's
2876 // sync list)
2877} kmp_free_list_t;
2878#endif
2879#if KMP_NESTED_HOT_TEAMS
2880// Hot teams array keeps hot teams and their sizes for given thread. Hot teams
2881// are not put in teams pool, and they don't put threads in threads pool.
2882typedef struct kmp_hot_team_ptr {
2883 kmp_team_p *hot_team; // pointer to hot_team of given nesting level
2884 kmp_int32 hot_team_nth; // number of threads allocated for the hot_team
2885} kmp_hot_team_ptr_t;
2886#endif
2887typedef struct kmp_teams_size {
2888 kmp_int32 nteams; // number of teams in a league
2889 kmp_int32 nth; // number of threads in each team of the league
2890} kmp_teams_size_t;
2891
2892// This struct stores a thread that acts as a "root" for a contention
2893// group. Contention groups are rooted at kmp_root threads, but also at
2894// each primary thread of each team created in the teams construct.
2895// This struct therefore also stores a thread_limit associated with
2896// that contention group, and a counter to track the number of threads
2897// active in that contention group. Each thread has a list of these: CG
2898// root threads have an entry in their list in which cg_root refers to
2899// the thread itself, whereas other workers in the CG will have a
2900// single entry where cg_root is same as the entry containing their CG
2901// root. When a thread encounters a teams construct, it will add a new
2902// entry to the front of its list, because it now roots a new CG.
2903typedef struct kmp_cg_root {
2904 kmp_info_p *cg_root; // "root" thread for a contention group
2905 // The CG root's limit comes from OMP_THREAD_LIMIT for root threads, or
2906 // thread_limit clause for teams primary threads
2907 kmp_int32 cg_thread_limit;
2908 kmp_int32 cg_nthreads; // Count of active threads in CG rooted at cg_root
2909 struct kmp_cg_root *up; // pointer to higher level CG root in list
2910} kmp_cg_root_t;
2911
2912// OpenMP thread data structures
2913
2914typedef struct KMP_ALIGN_CACHE kmp_base_info {
2915 /* Start with the readonly data which is cache aligned and padded. This is
2916 written before the thread starts working by the primary thread. Uber
2917 masters may update themselves later. Usage does not consider serialized
2918 regions. */
2919 kmp_desc_t th_info;
2920 kmp_team_p *th_team; /* team we belong to */
2921 kmp_root_p *th_root; /* pointer to root of task hierarchy */
2922 kmp_info_p *th_next_pool; /* next available thread in the pool */
2923 kmp_disp_t *th_dispatch; /* thread's dispatch data */
2924 int th_in_pool; /* in thread pool (32 bits for TCR/TCW) */
2925
2926 /* The following are cached from the team info structure */
2927 /* TODO use these in more places as determined to be needed via profiling */
2928 int th_team_nproc; /* number of threads in a team */
2929 kmp_info_p *th_team_master; /* the team's primary thread */
2930 int th_team_serialized; /* team is serialized */
2931 microtask_t th_teams_microtask; /* save entry address for teams construct */
2932 int th_teams_level; /* save initial level of teams construct */
2933/* it is 0 on device but may be any on host */
2934
2935/* The blocktime info is copied from the team struct to the thread struct */
2936/* at the start of a barrier, and the values stored in the team are used */
2937/* at points in the code where the team struct is no longer guaranteed */
2938/* to exist (from the POV of worker threads). */
2939#if KMP_USE_MONITOR
2940 int th_team_bt_intervals;
2941 int th_team_bt_set;
2942#else
2943 kmp_uint64 th_team_bt_intervals;
2944#endif
2945
2946#if KMP_AFFINITY_SUPPORTED
2947 kmp_affin_mask_t *th_affin_mask; /* thread's current affinity mask */
2948 kmp_affinity_ids_t th_topology_ids; /* thread's current topology ids */
2949 kmp_affinity_attrs_t th_topology_attrs; /* thread's current topology attrs */
2950#endif
2951 omp_allocator_handle_t th_def_allocator; /* default allocator */
2952 /* The data set by the primary thread at reinit, then R/W by the worker */
2953 KMP_ALIGN_CACHE int
2954 th_set_nproc; /* if > 0, then only use this request for the next fork */
2955#if KMP_NESTED_HOT_TEAMS
2956 kmp_hot_team_ptr_t *th_hot_teams; /* array of hot teams */
2957#endif
2958 kmp_proc_bind_t
2959 th_set_proc_bind; /* if != proc_bind_default, use request for next fork */
2960 kmp_teams_size_t
2961 th_teams_size; /* number of teams/threads in teams construct */
2962#if KMP_AFFINITY_SUPPORTED
2963 int th_current_place; /* place currently bound to */
2964 int th_new_place; /* place to bind to in par reg */
2965 int th_first_place; /* first place in partition */
2966 int th_last_place; /* last place in partition */
2967#endif
2968 int th_prev_level; /* previous level for affinity format */
2969 int th_prev_num_threads; /* previous num_threads for affinity format */
2970#if USE_ITT_BUILD
2971 kmp_uint64 th_bar_arrive_time; /* arrival to barrier timestamp */
2972 kmp_uint64 th_bar_min_time; /* minimum arrival time at the barrier */
2973 kmp_uint64 th_frame_time; /* frame timestamp */
2974#endif /* USE_ITT_BUILD */
2975 kmp_local_t th_local;
2976 struct private_common *th_pri_head;
2977
2978 /* Now the data only used by the worker (after initial allocation) */
2979 /* TODO the first serial team should actually be stored in the info_t
2980 structure. this will help reduce initial allocation overhead */
2981 KMP_ALIGN_CACHE kmp_team_p
2982 *th_serial_team; /*serialized team held in reserve*/
2983
2984#if OMPT_SUPPORT
2985 ompt_thread_info_t ompt_thread_info;
2986#endif
2987
2988 /* The following are also read by the primary thread during reinit */
2989 struct common_table *th_pri_common;
2990
2991 volatile kmp_uint32 th_spin_here; /* thread-local location for spinning */
2992 /* while awaiting queuing lock acquire */
2993
2994 volatile void *th_sleep_loc; // this points at a kmp_flag<T>
2995 flag_type th_sleep_loc_type; // enum type of flag stored in th_sleep_loc
2996
2997 ident_t *th_ident;
2998 unsigned th_x; // Random number generator data
2999 unsigned th_a; // Random number generator data
3000
3001 /* Tasking-related data for the thread */
3002 kmp_task_team_t *th_task_team; // Task team struct
3003 kmp_taskdata_t *th_current_task; // Innermost Task being executed
3004 kmp_uint8 th_task_state; // alternating 0/1 for task team identification
3005 kmp_uint8 *th_task_state_memo_stack; // Stack holding memos of th_task_state
3006 // at nested levels
3007 kmp_uint32 th_task_state_top; // Top element of th_task_state_memo_stack
3008 kmp_uint32 th_task_state_stack_sz; // Size of th_task_state_memo_stack
3009 kmp_uint32 th_reap_state; // Non-zero indicates thread is not
3010 // tasking, thus safe to reap
3011
3012 /* More stuff for keeping track of active/sleeping threads (this part is
3013 written by the worker thread) */
3014 kmp_uint8 th_active_in_pool; // included in count of #active threads in pool
3015 int th_active; // ! sleeping; 32 bits for TCR/TCW
3016 std::atomic<kmp_uint32> th_used_in_team; // Flag indicating use in team
3017 // 0 = not used in team; 1 = used in team;
3018 // 2 = transitioning to not used in team; 3 = transitioning to used in team
3019 struct cons_header *th_cons; // used for consistency check
3020#if KMP_USE_HIER_SCHED
3021 // used for hierarchical scheduling
3022 kmp_hier_private_bdata_t *th_hier_bar_data;
3023#endif
3024
3025 /* Add the syncronizing data which is cache aligned and padded. */
3026 KMP_ALIGN_CACHE kmp_balign_t th_bar[bs_last_barrier];
3027
3028 KMP_ALIGN_CACHE volatile kmp_int32
3029 th_next_waiting; /* gtid+1 of next thread on lock wait queue, 0 if none */
3030
3031#if (USE_FAST_MEMORY == 3) || (USE_FAST_MEMORY == 5)
3032#define NUM_LISTS 4
3033 kmp_free_list_t th_free_lists[NUM_LISTS]; // Free lists for fast memory
3034// allocation routines
3035#endif
3036
3037#if KMP_OS_WINDOWS
3038 kmp_win32_cond_t th_suspend_cv;
3039 kmp_win32_mutex_t th_suspend_mx;
3040 std::atomic<int> th_suspend_init;
3041#endif
3042#if KMP_OS_UNIX
3043 kmp_cond_align_t th_suspend_cv;
3044 kmp_mutex_align_t th_suspend_mx;
3045 std::atomic<int> th_suspend_init_count;
3046#endif
3047
3048#if USE_ITT_BUILD
3049 kmp_itt_mark_t th_itt_mark_single;
3050// alignment ???
3051#endif /* USE_ITT_BUILD */
3052#if KMP_STATS_ENABLED
3053 kmp_stats_list *th_stats;
3054#endif
3055#if KMP_OS_UNIX
3056 std::atomic<bool> th_blocking;
3057#endif
3058 kmp_cg_root_t *th_cg_roots; // list of cg_roots associated with this thread
3059} kmp_base_info_t;
3060
3061typedef union KMP_ALIGN_CACHE kmp_info {
3062 double th_align; /* use worst case alignment */
3063 char th_pad[KMP_PAD(kmp_base_info_t, CACHE_LINE)];
3064 kmp_base_info_t th;
3065} kmp_info_t;
3066
3067// OpenMP thread team data structures
3068
3069typedef struct kmp_base_data {
3070 volatile kmp_uint32 t_value;
3071} kmp_base_data_t;
3072
3073typedef union KMP_ALIGN_CACHE kmp_sleep_team {
3074 double dt_align; /* use worst case alignment */
3075 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
3076 kmp_base_data_t dt;
3077} kmp_sleep_team_t;
3078
3079typedef union KMP_ALIGN_CACHE kmp_ordered_team {
3080 double dt_align; /* use worst case alignment */
3081 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
3082 kmp_base_data_t dt;
3083} kmp_ordered_team_t;
3084
3085typedef int (*launch_t)(int gtid);
3086
3087/* Minimum number of ARGV entries to malloc if necessary */
3088#define KMP_MIN_MALLOC_ARGV_ENTRIES 100
3089
3090// Set up how many argv pointers will fit in cache lines containing
3091// t_inline_argv. Historically, we have supported at least 96 bytes. Using a
3092// larger value for more space between the primary write/worker read section and
3093// read/write by all section seems to buy more performance on EPCC PARALLEL.
3094#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3095#define KMP_INLINE_ARGV_BYTES \
3096 (4 * CACHE_LINE - \
3097 ((3 * KMP_PTR_SKIP + 2 * sizeof(int) + 2 * sizeof(kmp_int8) + \
3098 sizeof(kmp_int16) + sizeof(kmp_uint32)) % \
3099 CACHE_LINE))
3100#else
3101#define KMP_INLINE_ARGV_BYTES \
3102 (2 * CACHE_LINE - ((3 * KMP_PTR_SKIP + 2 * sizeof(int)) % CACHE_LINE))
3103#endif
3104#define KMP_INLINE_ARGV_ENTRIES (int)(KMP_INLINE_ARGV_BYTES / KMP_PTR_SKIP)
3105
3106typedef struct KMP_ALIGN_CACHE kmp_base_team {
3107 // Synchronization Data
3108 // ---------------------------------------------------------------------------
3109 KMP_ALIGN_CACHE kmp_ordered_team_t t_ordered;
3110 kmp_balign_team_t t_bar[bs_last_barrier];
3111 std::atomic<int> t_construct; // count of single directive encountered by team
3112 char pad[sizeof(kmp_lock_t)]; // padding to maintain performance on big iron
3113
3114 // [0] - parallel / [1] - worksharing task reduction data shared by taskgroups
3115 std::atomic<void *> t_tg_reduce_data[2]; // to support task modifier
3116 std::atomic<int> t_tg_fini_counter[2]; // sync end of task reductions
3117
3118 // Primary thread only
3119 // ---------------------------------------------------------------------------
3120 KMP_ALIGN_CACHE int t_master_tid; // tid of primary thread in parent team
3121 int t_master_this_cons; // "this_construct" single counter of primary thread
3122 // in parent team
3123 ident_t *t_ident; // if volatile, have to change too much other crud to
3124 // volatile too
3125 kmp_team_p *t_parent; // parent team
3126 kmp_team_p *t_next_pool; // next free team in the team pool
3127 kmp_disp_t *t_dispatch; // thread's dispatch data
3128 kmp_task_team_t *t_task_team[2]; // Task team struct; switch between 2
3129 kmp_proc_bind_t t_proc_bind; // bind type for par region
3130#if USE_ITT_BUILD
3131 kmp_uint64 t_region_time; // region begin timestamp
3132#endif /* USE_ITT_BUILD */
3133
3134 // Primary thread write, workers read
3135 // --------------------------------------------------------------------------
3136 KMP_ALIGN_CACHE void **t_argv;
3137 int t_argc;
3138 int t_nproc; // number of threads in team
3139 microtask_t t_pkfn;
3140 launch_t t_invoke; // procedure to launch the microtask
3141
3142#if OMPT_SUPPORT
3143 ompt_team_info_t ompt_team_info;
3144 ompt_lw_taskteam_t *ompt_serialized_team_info;
3145#endif
3146
3147#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3148 kmp_int8 t_fp_control_saved;
3149 kmp_int8 t_pad2b;
3150 kmp_int16 t_x87_fpu_control_word; // FP control regs
3151 kmp_uint32 t_mxcsr;
3152#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3153
3154 void *t_inline_argv[KMP_INLINE_ARGV_ENTRIES];
3155
3156 KMP_ALIGN_CACHE kmp_info_t **t_threads;
3157 kmp_taskdata_t
3158 *t_implicit_task_taskdata; // Taskdata for the thread's implicit task
3159 int t_level; // nested parallel level
3160
3161 KMP_ALIGN_CACHE int t_max_argc;
3162 int t_max_nproc; // max threads this team can handle (dynamically expandable)
3163 int t_serialized; // levels deep of serialized teams
3164 dispatch_shared_info_t *t_disp_buffer; // buffers for dispatch system
3165 int t_id; // team's id, assigned by debugger.
3166 int t_active_level; // nested active parallel level
3167 kmp_r_sched_t t_sched; // run-time schedule for the team
3168#if KMP_AFFINITY_SUPPORTED
3169 int t_first_place; // first & last place in parent thread's partition.
3170 int t_last_place; // Restore these values to primary thread after par region.
3171#endif // KMP_AFFINITY_SUPPORTED
3172 int t_display_affinity;
3173 int t_size_changed; // team size was changed?: 0: no, 1: yes, -1: changed via
3174 // omp_set_num_threads() call
3175 omp_allocator_handle_t t_def_allocator; /* default allocator */
3176
3177// Read/write by workers as well
3178#if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
3179 // Using CACHE_LINE=64 reduces memory footprint, but causes a big perf
3180 // regression of epcc 'parallel' and 'barrier' on fxe256lin01. This extra
3181 // padding serves to fix the performance of epcc 'parallel' and 'barrier' when
3182 // CACHE_LINE=64. TODO: investigate more and get rid if this padding.
3183 char dummy_padding[1024];
3184#endif
3185 // Internal control stack for additional nested teams.
3186 KMP_ALIGN_CACHE kmp_internal_control_t *t_control_stack_top;
3187 // for SERIALIZED teams nested 2 or more levels deep
3188 // typed flag to store request state of cancellation
3189 std::atomic<kmp_int32> t_cancel_request;
3190 int t_master_active; // save on fork, restore on join
3191 void *t_copypriv_data; // team specific pointer to copyprivate data array
3192#if KMP_OS_WINDOWS
3193 std::atomic<kmp_uint32> t_copyin_counter;
3194#endif
3195#if USE_ITT_BUILD
3196 void *t_stack_id; // team specific stack stitching id (for ittnotify)
3197#endif /* USE_ITT_BUILD */
3198 distributedBarrier *b; // Distributed barrier data associated with team
3199} kmp_base_team_t;
3200
3201union KMP_ALIGN_CACHE kmp_team {
3202 kmp_base_team_t t;
3203 double t_align; /* use worst case alignment */
3204 char t_pad[KMP_PAD(kmp_base_team_t, CACHE_LINE)];
3205};
3206
3207typedef union KMP_ALIGN_CACHE kmp_time_global {
3208 double dt_align; /* use worst case alignment */
3209 char dt_pad[KMP_PAD(kmp_base_data_t, CACHE_LINE)];
3210 kmp_base_data_t dt;
3211} kmp_time_global_t;
3212
3213typedef struct kmp_base_global {
3214 /* cache-aligned */
3215 kmp_time_global_t g_time;
3216
3217 /* non cache-aligned */
3218 volatile int g_abort;
3219 volatile int g_done;
3220
3221 int g_dynamic;
3222 enum dynamic_mode g_dynamic_mode;
3223} kmp_base_global_t;
3224
3225typedef union KMP_ALIGN_CACHE kmp_global {
3226 kmp_base_global_t g;
3227 double g_align; /* use worst case alignment */
3228 char g_pad[KMP_PAD(kmp_base_global_t, CACHE_LINE)];
3229} kmp_global_t;
3230
3231typedef struct kmp_base_root {
3232 // TODO: GEH - combine r_active with r_in_parallel then r_active ==
3233 // (r_in_parallel>= 0)
3234 // TODO: GEH - then replace r_active with t_active_levels if we can to reduce
3235 // the synch overhead or keeping r_active
3236 volatile int r_active; /* TRUE if some region in a nest has > 1 thread */
3237 // keeps a count of active parallel regions per root
3238 std::atomic<int> r_in_parallel;
3239 // GEH: This is misnamed, should be r_active_levels
3240 kmp_team_t *r_root_team;
3241 kmp_team_t *r_hot_team;
3242 kmp_info_t *r_uber_thread;
3243 kmp_lock_t r_begin_lock;
3244 volatile int r_begin;
3245 int r_blocktime; /* blocktime for this root and descendants */
3246#if KMP_AFFINITY_SUPPORTED
3247 int r_affinity_assigned;
3248#endif // KMP_AFFINITY_SUPPORTED
3249} kmp_base_root_t;
3250
3251typedef union KMP_ALIGN_CACHE kmp_root {
3252 kmp_base_root_t r;
3253 double r_align; /* use worst case alignment */
3254 char r_pad[KMP_PAD(kmp_base_root_t, CACHE_LINE)];
3255} kmp_root_t;
3256
3257struct fortran_inx_info {
3258 kmp_int32 data;
3259};
3260
3261// This list type exists to hold old __kmp_threads arrays so that
3262// old references to them may complete while reallocation takes place when
3263// expanding the array. The items in this list are kept alive until library
3264// shutdown.
3265typedef struct kmp_old_threads_list_t {
3266 kmp_info_t **threads;
3267 struct kmp_old_threads_list_t *next;
3268} kmp_old_threads_list_t;
3269
3270/* ------------------------------------------------------------------------ */
3271
3272extern int __kmp_settings;
3273extern int __kmp_duplicate_library_ok;
3274#if USE_ITT_BUILD
3275extern int __kmp_forkjoin_frames;
3276extern int __kmp_forkjoin_frames_mode;
3277#endif
3278extern PACKED_REDUCTION_METHOD_T __kmp_force_reduction_method;
3279extern int __kmp_determ_red;
3280
3281#ifdef KMP_DEBUG
3282extern int kmp_a_debug;
3283extern int kmp_b_debug;
3284extern int kmp_c_debug;
3285extern int kmp_d_debug;
3286extern int kmp_e_debug;
3287extern int kmp_f_debug;
3288#endif /* KMP_DEBUG */
3289
3290/* For debug information logging using rotating buffer */
3291#define KMP_DEBUG_BUF_LINES_INIT 512
3292#define KMP_DEBUG_BUF_LINES_MIN 1
3293
3294#define KMP_DEBUG_BUF_CHARS_INIT 128
3295#define KMP_DEBUG_BUF_CHARS_MIN 2
3296
3297extern int
3298 __kmp_debug_buf; /* TRUE means use buffer, FALSE means print to stderr */
3299extern int __kmp_debug_buf_lines; /* How many lines of debug stored in buffer */
3300extern int
3301 __kmp_debug_buf_chars; /* How many characters allowed per line in buffer */
3302extern int __kmp_debug_buf_atomic; /* TRUE means use atomic update of buffer
3303 entry pointer */
3304
3305extern char *__kmp_debug_buffer; /* Debug buffer itself */
3306extern std::atomic<int> __kmp_debug_count; /* Counter for number of lines
3307 printed in buffer so far */
3308extern int __kmp_debug_buf_warn_chars; /* Keep track of char increase
3309 recommended in warnings */
3310/* end rotating debug buffer */
3311
3312#ifdef KMP_DEBUG
3313extern int __kmp_par_range; /* +1 => only go par for constructs in range */
3314
3315#define KMP_PAR_RANGE_ROUTINE_LEN 1024
3316extern char __kmp_par_range_routine[KMP_PAR_RANGE_ROUTINE_LEN];
3317#define KMP_PAR_RANGE_FILENAME_LEN 1024
3318extern char __kmp_par_range_filename[KMP_PAR_RANGE_FILENAME_LEN];
3319extern int __kmp_par_range_lb;
3320extern int __kmp_par_range_ub;
3321#endif
3322
3323/* For printing out dynamic storage map for threads and teams */
3324extern int
3325 __kmp_storage_map; /* True means print storage map for threads and teams */
3326extern int __kmp_storage_map_verbose; /* True means storage map includes
3327 placement info */
3328extern int __kmp_storage_map_verbose_specified;
3329
3330#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3331extern kmp_cpuinfo_t __kmp_cpuinfo;
3332static inline bool __kmp_is_hybrid_cpu() { return __kmp_cpuinfo.flags.hybrid; }
3333#elif KMP_OS_DARWIN && KMP_ARCH_AARCH64
3334static inline bool __kmp_is_hybrid_cpu() { return true; }
3335#else
3336static inline bool __kmp_is_hybrid_cpu() { return false; }
3337#endif
3338
3339extern volatile int __kmp_init_serial;
3340extern volatile int __kmp_init_gtid;
3341extern volatile int __kmp_init_common;
3342extern volatile int __kmp_need_register_serial;
3343extern volatile int __kmp_init_middle;
3344extern volatile int __kmp_init_parallel;
3345#if KMP_USE_MONITOR
3346extern volatile int __kmp_init_monitor;
3347#endif
3348extern volatile int __kmp_init_user_locks;
3349extern volatile int __kmp_init_hidden_helper_threads;
3350extern int __kmp_init_counter;
3351extern int __kmp_root_counter;
3352extern int __kmp_version;
3353
3354/* list of address of allocated caches for commons */
3355extern kmp_cached_addr_t *__kmp_threadpriv_cache_list;
3356
3357/* Barrier algorithm types and options */
3358extern kmp_uint32 __kmp_barrier_gather_bb_dflt;
3359extern kmp_uint32 __kmp_barrier_release_bb_dflt;
3360extern kmp_bar_pat_e __kmp_barrier_gather_pat_dflt;
3361extern kmp_bar_pat_e __kmp_barrier_release_pat_dflt;
3362extern kmp_uint32 __kmp_barrier_gather_branch_bits[bs_last_barrier];
3363extern kmp_uint32 __kmp_barrier_release_branch_bits[bs_last_barrier];
3364extern kmp_bar_pat_e __kmp_barrier_gather_pattern[bs_last_barrier];
3365extern kmp_bar_pat_e __kmp_barrier_release_pattern[bs_last_barrier];
3366extern char const *__kmp_barrier_branch_bit_env_name[bs_last_barrier];
3367extern char const *__kmp_barrier_pattern_env_name[bs_last_barrier];
3368extern char const *__kmp_barrier_type_name[bs_last_barrier];
3369extern char const *__kmp_barrier_pattern_name[bp_last_bar];
3370
3371/* Global Locks */
3372extern kmp_bootstrap_lock_t __kmp_initz_lock; /* control initialization */
3373extern kmp_bootstrap_lock_t __kmp_forkjoin_lock; /* control fork/join access */
3374extern kmp_bootstrap_lock_t __kmp_task_team_lock;
3375extern kmp_bootstrap_lock_t
3376 __kmp_exit_lock; /* exit() is not always thread-safe */
3377#if KMP_USE_MONITOR
3378extern kmp_bootstrap_lock_t
3379 __kmp_monitor_lock; /* control monitor thread creation */
3380#endif
3381extern kmp_bootstrap_lock_t
3382 __kmp_tp_cached_lock; /* used for the hack to allow threadprivate cache and
3383 __kmp_threads expansion to co-exist */
3384
3385extern kmp_lock_t __kmp_global_lock; /* control OS/global access */
3386extern kmp_queuing_lock_t __kmp_dispatch_lock; /* control dispatch access */
3387extern kmp_lock_t __kmp_debug_lock; /* control I/O access for KMP_DEBUG */
3388
3389extern enum library_type __kmp_library;
3390
3391extern enum sched_type __kmp_sched; /* default runtime scheduling */
3392extern enum sched_type __kmp_static; /* default static scheduling method */
3393extern enum sched_type __kmp_guided; /* default guided scheduling method */
3394extern enum sched_type __kmp_auto; /* default auto scheduling method */
3395extern int __kmp_chunk; /* default runtime chunk size */
3396extern int __kmp_force_monotonic; /* whether monotonic scheduling forced */
3397
3398extern size_t __kmp_stksize; /* stack size per thread */
3399#if KMP_USE_MONITOR
3400extern size_t __kmp_monitor_stksize; /* stack size for monitor thread */
3401#endif
3402extern size_t __kmp_stkoffset; /* stack offset per thread */
3403extern int __kmp_stkpadding; /* Should we pad root thread(s) stack */
3404
3405extern size_t
3406 __kmp_malloc_pool_incr; /* incremental size of pool for kmp_malloc() */
3407extern int __kmp_env_stksize; /* was KMP_STACKSIZE specified? */
3408extern int __kmp_env_blocktime; /* was KMP_BLOCKTIME specified? */
3409extern int __kmp_env_checks; /* was KMP_CHECKS specified? */
3410extern int __kmp_env_consistency_check; // was KMP_CONSISTENCY_CHECK specified?
3411extern int __kmp_generate_warnings; /* should we issue warnings? */
3412extern int __kmp_reserve_warn; /* have we issued reserve_threads warning? */
3413
3414#ifdef DEBUG_SUSPEND
3415extern int __kmp_suspend_count; /* count inside __kmp_suspend_template() */
3416#endif
3417
3418extern kmp_int32 __kmp_use_yield;
3419extern kmp_int32 __kmp_use_yield_exp_set;
3420extern kmp_uint32 __kmp_yield_init;
3421extern kmp_uint32 __kmp_yield_next;
3422extern kmp_uint64 __kmp_pause_init;
3423
3424/* ------------------------------------------------------------------------- */
3425extern int __kmp_allThreadsSpecified;
3426
3427extern size_t __kmp_align_alloc;
3428/* following data protected by initialization routines */
3429extern int __kmp_xproc; /* number of processors in the system */
3430extern int __kmp_avail_proc; /* number of processors available to the process */
3431extern size_t __kmp_sys_min_stksize; /* system-defined minimum stack size */
3432extern int __kmp_sys_max_nth; /* system-imposed maximum number of threads */
3433// maximum total number of concurrently-existing threads on device
3434extern int __kmp_max_nth;
3435// maximum total number of concurrently-existing threads in a contention group
3436extern int __kmp_cg_max_nth;
3437extern int __kmp_task_max_nth; // max threads used in a task
3438extern int __kmp_teams_max_nth; // max threads used in a teams construct
3439extern int __kmp_threads_capacity; /* capacity of the arrays __kmp_threads and
3440 __kmp_root */
3441extern int __kmp_dflt_team_nth; /* default number of threads in a parallel
3442 region a la OMP_NUM_THREADS */
3443extern int __kmp_dflt_team_nth_ub; /* upper bound on "" determined at serial
3444 initialization */
3445extern int __kmp_tp_capacity; /* capacity of __kmp_threads if threadprivate is
3446 used (fixed) */
3447extern int __kmp_tp_cached; /* whether threadprivate cache has been created
3448 (__kmpc_threadprivate_cached()) */
3449extern int __kmp_dflt_blocktime; /* number of microseconds to wait before
3450 blocking (env setting) */
3451extern char __kmp_blocktime_units; /* 'm' or 'u' to note units specified */
3452extern bool __kmp_wpolicy_passive; /* explicitly set passive wait policy */
3453
3454// Convert raw blocktime from ms to us if needed.
3455static inline void __kmp_aux_convert_blocktime(int *bt) {
3456 if (__kmp_blocktime_units == 'm') {
3457 if (*bt > INT_MAX / 1000) {
3458 *bt = INT_MAX / 1000;
3459 KMP_INFORM(MaxValueUsing, "kmp_set_blocktime(ms)", bt);
3460 }
3461 *bt = *bt * 1000;
3462 }
3463}
3464
3465#if KMP_USE_MONITOR
3466extern int
3467 __kmp_monitor_wakeups; /* number of times monitor wakes up per second */
3468extern int __kmp_bt_intervals; /* number of monitor timestamp intervals before
3469 blocking */
3470#endif
3471#ifdef KMP_ADJUST_BLOCKTIME
3472extern int __kmp_zero_bt; /* whether blocktime has been forced to zero */
3473#endif /* KMP_ADJUST_BLOCKTIME */
3474#ifdef KMP_DFLT_NTH_CORES
3475extern int __kmp_ncores; /* Total number of cores for threads placement */
3476#endif
3477/* Number of millisecs to delay on abort for Intel(R) VTune(TM) tools */
3478extern int __kmp_abort_delay;
3479
3480extern int __kmp_need_register_atfork_specified;
3481extern int __kmp_need_register_atfork; /* At initialization, call pthread_atfork
3482 to install fork handler */
3483extern int __kmp_gtid_mode; /* Method of getting gtid, values:
3484 0 - not set, will be set at runtime
3485 1 - using stack search
3486 2 - dynamic TLS (pthread_getspecific(Linux* OS/OS
3487 X*) or TlsGetValue(Windows* OS))
3488 3 - static TLS (__declspec(thread) __kmp_gtid),
3489 Linux* OS .so only. */
3490extern int
3491 __kmp_adjust_gtid_mode; /* If true, adjust method based on #threads */
3492#ifdef KMP_TDATA_GTID
3493extern KMP_THREAD_LOCAL int __kmp_gtid;
3494#endif
3495extern int __kmp_tls_gtid_min; /* #threads below which use sp search for gtid */
3496extern int __kmp_foreign_tp; // If true, separate TP var for each foreign thread
3497#if KMP_ARCH_X86 || KMP_ARCH_X86_64
3498extern int __kmp_inherit_fp_control; // copy fp creg(s) parent->workers at fork
3499extern kmp_int16 __kmp_init_x87_fpu_control_word; // init thread's FP ctrl reg
3500extern kmp_uint32 __kmp_init_mxcsr; /* init thread's mxscr */
3501#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
3502
3503// max_active_levels for nested parallelism enabled by default via
3504// OMP_MAX_ACTIVE_LEVELS, OMP_NESTED, OMP_NUM_THREADS, and OMP_PROC_BIND
3505extern int __kmp_dflt_max_active_levels;
3506// Indicates whether value of __kmp_dflt_max_active_levels was already
3507// explicitly set by OMP_MAX_ACTIVE_LEVELS or OMP_NESTED=false
3508extern bool __kmp_dflt_max_active_levels_set;
3509extern int __kmp_dispatch_num_buffers; /* max possible dynamic loops in
3510 concurrent execution per team */
3511#if KMP_NESTED_HOT_TEAMS
3512extern int __kmp_hot_teams_mode;
3513extern int __kmp_hot_teams_max_level;
3514#endif
3515
3516#if KMP_OS_LINUX
3517extern enum clock_function_type __kmp_clock_function;
3518extern int __kmp_clock_function_param;
3519#endif /* KMP_OS_LINUX */
3520
3521#if KMP_MIC_SUPPORTED
3522extern enum mic_type __kmp_mic_type;
3523#endif
3524
3525#ifdef USE_LOAD_BALANCE
3526extern double __kmp_load_balance_interval; // load balance algorithm interval
3527#endif /* USE_LOAD_BALANCE */
3528
3529// OpenMP 3.1 - Nested num threads array
3530typedef struct kmp_nested_nthreads_t {
3531 int *nth;
3532 int size;
3533 int used;
3534} kmp_nested_nthreads_t;
3535
3536extern kmp_nested_nthreads_t __kmp_nested_nth;
3537
3538#if KMP_USE_ADAPTIVE_LOCKS
3539
3540// Parameters for the speculative lock backoff system.
3541struct kmp_adaptive_backoff_params_t {
3542 // Number of soft retries before it counts as a hard retry.
3543 kmp_uint32 max_soft_retries;
3544 // Badness is a bit mask : 0,1,3,7,15,... on each hard failure we move one to
3545 // the right
3546 kmp_uint32 max_badness;
3547};
3548
3549extern kmp_adaptive_backoff_params_t __kmp_adaptive_backoff_params;
3550
3551#if KMP_DEBUG_ADAPTIVE_LOCKS
3552extern const char *__kmp_speculative_statsfile;
3553#endif
3554
3555#endif // KMP_USE_ADAPTIVE_LOCKS
3556
3557extern int __kmp_display_env; /* TRUE or FALSE */
3558extern int __kmp_display_env_verbose; /* TRUE if OMP_DISPLAY_ENV=VERBOSE */
3559extern int __kmp_omp_cancellation; /* TRUE or FALSE */
3560extern int __kmp_nteams;
3561extern int __kmp_teams_thread_limit;
3562
3563/* ------------------------------------------------------------------------- */
3564
3565/* the following are protected by the fork/join lock */
3566/* write: lock read: anytime */
3567extern kmp_info_t **__kmp_threads; /* Descriptors for the threads */
3568/* Holds old arrays of __kmp_threads until library shutdown */
3569extern kmp_old_threads_list_t *__kmp_old_threads_list;
3570/* read/write: lock */
3571extern volatile kmp_team_t *__kmp_team_pool;
3572extern volatile kmp_info_t *__kmp_thread_pool;
3573extern kmp_info_t *__kmp_thread_pool_insert_pt;
3574
3575// total num threads reachable from some root thread including all root threads
3576extern volatile int __kmp_nth;
3577/* total number of threads reachable from some root thread including all root
3578 threads, and those in the thread pool */
3579extern volatile int __kmp_all_nth;
3580extern std::atomic<int> __kmp_thread_pool_active_nth;
3581
3582extern kmp_root_t **__kmp_root; /* root of thread hierarchy */
3583/* end data protected by fork/join lock */
3584/* ------------------------------------------------------------------------- */
3585
3586#define __kmp_get_gtid() __kmp_get_global_thread_id()
3587#define __kmp_entry_gtid() __kmp_get_global_thread_id_reg()
3588#define __kmp_get_tid() (__kmp_tid_from_gtid(__kmp_get_gtid()))
3589#define __kmp_get_team() (__kmp_threads[(__kmp_get_gtid())]->th.th_team)
3590#define __kmp_get_thread() (__kmp_thread_from_gtid(__kmp_get_gtid()))
3591
3592// AT: Which way is correct?
3593// AT: 1. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team -> t.t_nproc;
3594// AT: 2. nproc = __kmp_threads[ ( gtid ) ] -> th.th_team_nproc;
3595#define __kmp_get_team_num_threads(gtid) \
3596 (__kmp_threads[(gtid)]->th.th_team->t.t_nproc)
3597
3598static inline bool KMP_UBER_GTID(int gtid) {
3599 KMP_DEBUG_ASSERT(gtid >= KMP_GTID_MIN);
3600 KMP_DEBUG_ASSERT(gtid < __kmp_threads_capacity);
3601 return (gtid >= 0 && __kmp_root[gtid] && __kmp_threads[gtid] &&
3602 __kmp_threads[gtid] == __kmp_root[gtid]->r.r_uber_thread);
3603}
3604
3605static inline int __kmp_tid_from_gtid(int gtid) {
3606 KMP_DEBUG_ASSERT(gtid >= 0);
3607 return __kmp_threads[gtid]->th.th_info.ds.ds_tid;
3608}
3609
3610static inline int __kmp_gtid_from_tid(int tid, const kmp_team_t *team) {
3611 KMP_DEBUG_ASSERT(tid >= 0 && team);
3612 return team->t.t_threads[tid]->th.th_info.ds.ds_gtid;
3613}
3614
3615static inline int __kmp_gtid_from_thread(const kmp_info_t *thr) {
3616 KMP_DEBUG_ASSERT(thr);
3617 return thr->th.th_info.ds.ds_gtid;
3618}
3619
3620static inline kmp_info_t *__kmp_thread_from_gtid(int gtid) {
3621 KMP_DEBUG_ASSERT(gtid >= 0);
3622 return __kmp_threads[gtid];
3623}
3624
3625static inline kmp_team_t *__kmp_team_from_gtid(int gtid) {
3626 KMP_DEBUG_ASSERT(gtid >= 0);
3627 return __kmp_threads[gtid]->th.th_team;
3628}
3629
3630static inline void __kmp_assert_valid_gtid(kmp_int32 gtid) {
3631 if (UNLIKELY(gtid < 0 || gtid >= __kmp_threads_capacity))
3632 KMP_FATAL(ThreadIdentInvalid);
3633}
3634
3635#if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
3636extern int __kmp_user_level_mwait; // TRUE or FALSE; from KMP_USER_LEVEL_MWAIT
3637extern int __kmp_umwait_enabled; // Runtime check if user-level mwait enabled
3638extern int __kmp_mwait_enabled; // Runtime check if ring3 mwait is enabled
3639extern int __kmp_mwait_hints; // Hints to pass in to mwait
3640#endif
3641
3642#if KMP_HAVE_UMWAIT
3643extern int __kmp_waitpkg_enabled; // Runtime check if waitpkg exists
3644extern int __kmp_tpause_state; // 0 (default), 1=C0.1, 2=C0.2; from KMP_TPAUSE
3645extern int __kmp_tpause_hint; // 1=C0.1 (default), 0=C0.2; from KMP_TPAUSE
3646extern int __kmp_tpause_enabled; // 0 (default), 1 (KMP_TPAUSE is non-zero)
3647#endif
3648
3649/* ------------------------------------------------------------------------- */
3650
3651extern kmp_global_t __kmp_global; /* global status */
3652
3653extern kmp_info_t __kmp_monitor;
3654// For Debugging Support Library
3655extern std::atomic<kmp_int32> __kmp_team_counter;
3656// For Debugging Support Library
3657extern std::atomic<kmp_int32> __kmp_task_counter;
3658
3659#if USE_DEBUGGER
3660#define _KMP_GEN_ID(counter) \
3661 (__kmp_debugging ? KMP_ATOMIC_INC(&counter) + 1 : ~0)
3662#else
3663#define _KMP_GEN_ID(counter) (~0)
3664#endif /* USE_DEBUGGER */
3665
3666#define KMP_GEN_TASK_ID() _KMP_GEN_ID(__kmp_task_counter)
3667#define KMP_GEN_TEAM_ID() _KMP_GEN_ID(__kmp_team_counter)
3668
3669/* ------------------------------------------------------------------------ */
3670
3671extern void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2,
3672 size_t size, char const *format, ...);
3673
3674extern void __kmp_serial_initialize(void);
3675extern void __kmp_middle_initialize(void);
3676extern void __kmp_parallel_initialize(void);
3677
3678extern void __kmp_internal_begin(void);
3679extern void __kmp_internal_end_library(int gtid);
3680extern void __kmp_internal_end_thread(int gtid);
3681extern void __kmp_internal_end_atexit(void);
3682extern void __kmp_internal_end_dtor(void);
3683extern void __kmp_internal_end_dest(void *);
3684
3685extern int __kmp_register_root(int initial_thread);
3686extern void __kmp_unregister_root(int gtid);
3687extern void __kmp_unregister_library(void); // called by __kmp_internal_end()
3688
3689extern int __kmp_ignore_mppbeg(void);
3690extern int __kmp_ignore_mppend(void);
3691
3692extern int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws);
3693extern void __kmp_exit_single(int gtid);
3694
3695extern void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3696extern void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref);
3697
3698#ifdef USE_LOAD_BALANCE
3699extern int __kmp_get_load_balance(int);
3700#endif
3701
3702extern int __kmp_get_global_thread_id(void);
3703extern int __kmp_get_global_thread_id_reg(void);
3704extern void __kmp_exit_thread(int exit_status);
3705extern void __kmp_abort(char const *format, ...);
3706extern void __kmp_abort_thread(void);
3707KMP_NORETURN extern void __kmp_abort_process(void);
3708extern void __kmp_warn(char const *format, ...);
3709
3710extern void __kmp_set_num_threads(int new_nth, int gtid);
3711
3712extern bool __kmp_detect_shm();
3713extern bool __kmp_detect_tmp();
3714
3715// Returns current thread (pointer to kmp_info_t). Current thread *must* be
3716// registered.
3717static inline kmp_info_t *__kmp_entry_thread() {
3718 int gtid = __kmp_entry_gtid();
3719
3720 return __kmp_threads[gtid];
3721}
3722
3723extern void __kmp_set_max_active_levels(int gtid, int new_max_active_levels);
3724extern int __kmp_get_max_active_levels(int gtid);
3725extern int __kmp_get_ancestor_thread_num(int gtid, int level);
3726extern int __kmp_get_team_size(int gtid, int level);
3727extern void __kmp_set_schedule(int gtid, kmp_sched_t new_sched, int chunk);
3728extern void __kmp_get_schedule(int gtid, kmp_sched_t *sched, int *chunk);
3729
3730extern unsigned short __kmp_get_random(kmp_info_t *thread);
3731extern void __kmp_init_random(kmp_info_t *thread);
3732
3733extern kmp_r_sched_t __kmp_get_schedule_global(void);
3734extern void __kmp_adjust_num_threads(int new_nproc);
3735extern void __kmp_check_stksize(size_t *val);
3736
3737extern void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL);
3738extern void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL);
3739extern void ___kmp_free(void *ptr KMP_SRC_LOC_DECL);
3740#define __kmp_allocate(size) ___kmp_allocate((size)KMP_SRC_LOC_CURR)
3741#define __kmp_page_allocate(size) ___kmp_page_allocate((size)KMP_SRC_LOC_CURR)
3742#define __kmp_free(ptr) ___kmp_free((ptr)KMP_SRC_LOC_CURR)
3743
3744#if USE_FAST_MEMORY
3745extern void *___kmp_fast_allocate(kmp_info_t *this_thr,
3746 size_t size KMP_SRC_LOC_DECL);
3747extern void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL);
3748extern void __kmp_free_fast_memory(kmp_info_t *this_thr);
3749extern void __kmp_initialize_fast_memory(kmp_info_t *this_thr);
3750#define __kmp_fast_allocate(this_thr, size) \
3751 ___kmp_fast_allocate((this_thr), (size)KMP_SRC_LOC_CURR)
3752#define __kmp_fast_free(this_thr, ptr) \
3753 ___kmp_fast_free((this_thr), (ptr)KMP_SRC_LOC_CURR)
3754#endif
3755
3756extern void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL);
3757extern void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem,
3758 size_t elsize KMP_SRC_LOC_DECL);
3759extern void *___kmp_thread_realloc(kmp_info_t *th, void *ptr,
3760 size_t size KMP_SRC_LOC_DECL);
3761extern void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL);
3762#define __kmp_thread_malloc(th, size) \
3763 ___kmp_thread_malloc((th), (size)KMP_SRC_LOC_CURR)
3764#define __kmp_thread_calloc(th, nelem, elsize) \
3765 ___kmp_thread_calloc((th), (nelem), (elsize)KMP_SRC_LOC_CURR)
3766#define __kmp_thread_realloc(th, ptr, size) \
3767 ___kmp_thread_realloc((th), (ptr), (size)KMP_SRC_LOC_CURR)
3768#define __kmp_thread_free(th, ptr) \
3769 ___kmp_thread_free((th), (ptr)KMP_SRC_LOC_CURR)
3770
3771extern void __kmp_push_num_threads(ident_t *loc, int gtid, int num_threads);
3772
3773extern void __kmp_push_proc_bind(ident_t *loc, int gtid,
3774 kmp_proc_bind_t proc_bind);
3775extern void __kmp_push_num_teams(ident_t *loc, int gtid, int num_teams,
3776 int num_threads);
3777extern void __kmp_push_num_teams_51(ident_t *loc, int gtid, int num_teams_lb,
3778 int num_teams_ub, int num_threads);
3779
3780extern void __kmp_yield();
3781
3782extern void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3783 enum sched_type schedule, kmp_int32 lb,
3784 kmp_int32 ub, kmp_int32 st, kmp_int32 chunk);
3785extern void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3786 enum sched_type schedule, kmp_uint32 lb,
3787 kmp_uint32 ub, kmp_int32 st,
3788 kmp_int32 chunk);
3789extern void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3790 enum sched_type schedule, kmp_int64 lb,
3791 kmp_int64 ub, kmp_int64 st, kmp_int64 chunk);
3792extern void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3793 enum sched_type schedule, kmp_uint64 lb,
3794 kmp_uint64 ub, kmp_int64 st,
3795 kmp_int64 chunk);
3796
3797extern int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid,
3798 kmp_int32 *p_last, kmp_int32 *p_lb,
3799 kmp_int32 *p_ub, kmp_int32 *p_st);
3800extern int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid,
3801 kmp_int32 *p_last, kmp_uint32 *p_lb,
3802 kmp_uint32 *p_ub, kmp_int32 *p_st);
3803extern int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid,
3804 kmp_int32 *p_last, kmp_int64 *p_lb,
3805 kmp_int64 *p_ub, kmp_int64 *p_st);
3806extern int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid,
3807 kmp_int32 *p_last, kmp_uint64 *p_lb,
3808 kmp_uint64 *p_ub, kmp_int64 *p_st);
3809
3810extern void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid);
3811extern void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid);
3812extern void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid);
3813extern void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid);
3814
3815#ifdef KMP_GOMP_COMPAT
3816
3817extern void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
3818 enum sched_type schedule, kmp_int32 lb,
3819 kmp_int32 ub, kmp_int32 st,
3820 kmp_int32 chunk, int push_ws);
3821extern void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
3822 enum sched_type schedule, kmp_uint32 lb,
3823 kmp_uint32 ub, kmp_int32 st,
3824 kmp_int32 chunk, int push_ws);
3825extern void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
3826 enum sched_type schedule, kmp_int64 lb,
3827 kmp_int64 ub, kmp_int64 st,
3828 kmp_int64 chunk, int push_ws);
3829extern void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
3830 enum sched_type schedule, kmp_uint64 lb,
3831 kmp_uint64 ub, kmp_int64 st,
3832 kmp_int64 chunk, int push_ws);
3833extern void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid);
3834extern void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid);
3835extern void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid);
3836extern void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid);
3837
3838#endif /* KMP_GOMP_COMPAT */
3839
3840extern kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker);
3841extern kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker);
3842extern kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker);
3843extern kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker);
3844extern kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker);
3845extern kmp_uint32 __kmp_wait_4(kmp_uint32 volatile *spinner, kmp_uint32 checker,
3846 kmp_uint32 (*pred)(kmp_uint32, kmp_uint32),
3847 void *obj);
3848extern void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker,
3849 kmp_uint32 (*pred)(void *, kmp_uint32), void *obj);
3850
3851extern void __kmp_wait_64(kmp_info_t *this_thr, kmp_flag_64<> *flag,
3852 int final_spin
3853#if USE_ITT_BUILD
3854 ,
3855 void *itt_sync_obj
3856#endif
3857);
3858extern void __kmp_release_64(kmp_flag_64<> *flag);
3859
3860extern void __kmp_infinite_loop(void);
3861
3862extern void __kmp_cleanup(void);
3863
3864#if KMP_HANDLE_SIGNALS
3865extern int __kmp_handle_signals;
3866extern void __kmp_install_signals(int parallel_init);
3867extern void __kmp_remove_signals(void);
3868#endif
3869
3870extern void __kmp_clear_system_time(void);
3871extern void __kmp_read_system_time(double *delta);
3872
3873extern void __kmp_check_stack_overlap(kmp_info_t *thr);
3874
3875extern void __kmp_expand_host_name(char *buffer, size_t size);
3876extern void __kmp_expand_file_name(char *result, size_t rlen, char *pattern);
3877
3878#if KMP_ARCH_X86 || KMP_ARCH_X86_64 || (KMP_OS_WINDOWS && (KMP_ARCH_AARCH64 || KMP_ARCH_ARM))
3879extern void
3880__kmp_initialize_system_tick(void); /* Initialize timer tick value */
3881#endif
3882
3883extern void
3884__kmp_runtime_initialize(void); /* machine specific initialization */
3885extern void __kmp_runtime_destroy(void);
3886
3887#if KMP_AFFINITY_SUPPORTED
3888extern char *__kmp_affinity_print_mask(char *buf, int buf_len,
3889 kmp_affin_mask_t *mask);
3890extern kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
3891 kmp_affin_mask_t *mask);
3892extern void __kmp_affinity_initialize(kmp_affinity_t &affinity);
3893extern void __kmp_affinity_uninitialize(void);
3894extern void __kmp_affinity_set_init_mask(
3895 int gtid, int isa_root); /* set affinity according to KMP_AFFINITY */
3896void __kmp_affinity_bind_init_mask(int gtid);
3897extern void __kmp_affinity_bind_place(int gtid);
3898extern void __kmp_affinity_determine_capable(const char *env_var);
3899extern int __kmp_aux_set_affinity(void **mask);
3900extern int __kmp_aux_get_affinity(void **mask);
3901extern int __kmp_aux_get_affinity_max_proc();
3902extern int __kmp_aux_set_affinity_mask_proc(int proc, void **mask);
3903extern int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask);
3904extern int __kmp_aux_get_affinity_mask_proc(int proc, void **mask);
3905extern void __kmp_balanced_affinity(kmp_info_t *th, int team_size);
3906#if KMP_WEIGHTED_ITERATIONS_SUPPORTED
3907extern int __kmp_get_first_osid_with_ecore(void);
3908#endif
3909#if KMP_OS_LINUX || KMP_OS_FREEBSD
3910extern int kmp_set_thread_affinity_mask_initial(void);
3911#endif
3912static inline void __kmp_assign_root_init_mask() {
3913 int gtid = __kmp_entry_gtid();
3914 kmp_root_t *r = __kmp_threads[gtid]->th.th_root;
3915 if (r->r.r_uber_thread == __kmp_threads[gtid] && !r->r.r_affinity_assigned) {
3916 __kmp_affinity_set_init_mask(gtid, /*isa_root=*/TRUE);
3917 __kmp_affinity_bind_init_mask(gtid);
3918 r->r.r_affinity_assigned = TRUE;
3919 }
3920}
3921static inline void __kmp_reset_root_init_mask(int gtid) {
3922 if (!KMP_AFFINITY_CAPABLE())
3923 return;
3924 kmp_info_t *th = __kmp_threads[gtid];
3925 kmp_root_t *r = th->th.th_root;
3926 if (r->r.r_uber_thread == th && r->r.r_affinity_assigned) {
3927 __kmp_set_system_affinity(__kmp_affin_origMask, FALSE);
3928 KMP_CPU_COPY(th->th.th_affin_mask, __kmp_affin_origMask);
3929 r->r.r_affinity_assigned = FALSE;
3930 }
3931}
3932#else /* KMP_AFFINITY_SUPPORTED */
3933#define __kmp_assign_root_init_mask() /* Nothing */
3934static inline void __kmp_reset_root_init_mask(int gtid) {}
3935#endif /* KMP_AFFINITY_SUPPORTED */
3936// No need for KMP_AFFINITY_SUPPORTED guard as only one field in the
3937// format string is for affinity, so platforms that do not support
3938// affinity can still use the other fields, e.g., %n for num_threads
3939extern size_t __kmp_aux_capture_affinity(int gtid, const char *format,
3940 kmp_str_buf_t *buffer);
3941extern void __kmp_aux_display_affinity(int gtid, const char *format);
3942
3943extern void __kmp_cleanup_hierarchy();
3944extern void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar);
3945
3946#if KMP_USE_FUTEX
3947
3948extern int __kmp_futex_determine_capable(void);
3949
3950#endif // KMP_USE_FUTEX
3951
3952extern void __kmp_gtid_set_specific(int gtid);
3953extern int __kmp_gtid_get_specific(void);
3954
3955extern double __kmp_read_cpu_time(void);
3956
3957extern int __kmp_read_system_info(struct kmp_sys_info *info);
3958
3959#if KMP_USE_MONITOR
3960extern void __kmp_create_monitor(kmp_info_t *th);
3961#endif
3962
3963extern void *__kmp_launch_thread(kmp_info_t *thr);
3964
3965extern void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size);
3966
3967#if KMP_OS_WINDOWS
3968extern int __kmp_still_running(kmp_info_t *th);
3969extern int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val);
3970extern void __kmp_free_handle(kmp_thread_t tHandle);
3971#endif
3972
3973#if KMP_USE_MONITOR
3974extern void __kmp_reap_monitor(kmp_info_t *th);
3975#endif
3976extern void __kmp_reap_worker(kmp_info_t *th);
3977extern void __kmp_terminate_thread(int gtid);
3978
3979extern int __kmp_try_suspend_mx(kmp_info_t *th);
3980extern void __kmp_lock_suspend_mx(kmp_info_t *th);
3981extern void __kmp_unlock_suspend_mx(kmp_info_t *th);
3982
3983extern void __kmp_elapsed(double *);
3984extern void __kmp_elapsed_tick(double *);
3985
3986extern void __kmp_enable(int old_state);
3987extern void __kmp_disable(int *old_state);
3988
3989extern void __kmp_thread_sleep(int millis);
3990
3991extern void __kmp_common_initialize(void);
3992extern void __kmp_common_destroy(void);
3993extern void __kmp_common_destroy_gtid(int gtid);
3994
3995#if KMP_OS_UNIX
3996extern void __kmp_register_atfork(void);
3997#endif
3998extern void __kmp_suspend_initialize(void);
3999extern void __kmp_suspend_initialize_thread(kmp_info_t *th);
4000extern void __kmp_suspend_uninitialize_thread(kmp_info_t *th);
4001
4002extern kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team,
4003 int tid);
4004extern kmp_team_t *
4005__kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc,
4006#if OMPT_SUPPORT
4007 ompt_data_t ompt_parallel_data,
4008#endif
4009 kmp_proc_bind_t proc_bind, kmp_internal_control_t *new_icvs,
4010 int argc USE_NESTED_HOT_ARG(kmp_info_t *thr));
4011extern void __kmp_free_thread(kmp_info_t *);
4012extern void __kmp_free_team(kmp_root_t *,
4013 kmp_team_t *USE_NESTED_HOT_ARG(kmp_info_t *));
4014extern kmp_team_t *__kmp_reap_team(kmp_team_t *);
4015
4016/* ------------------------------------------------------------------------ */
4017
4018extern void __kmp_initialize_bget(kmp_info_t *th);
4019extern void __kmp_finalize_bget(kmp_info_t *th);
4020
4021KMP_EXPORT void *kmpc_malloc(size_t size);
4022KMP_EXPORT void *kmpc_aligned_malloc(size_t size, size_t alignment);
4023KMP_EXPORT void *kmpc_calloc(size_t nelem, size_t elsize);
4024KMP_EXPORT void *kmpc_realloc(void *ptr, size_t size);
4025KMP_EXPORT void kmpc_free(void *ptr);
4026
4027/* declarations for internal use */
4028
4029extern int __kmp_barrier(enum barrier_type bt, int gtid, int is_split,
4030 size_t reduce_size, void *reduce_data,
4031 void (*reduce)(void *, void *));
4032extern void __kmp_end_split_barrier(enum barrier_type bt, int gtid);
4033extern int __kmp_barrier_gomp_cancel(int gtid);
4034
4039enum fork_context_e {
4040 fork_context_gnu,
4042 fork_context_intel,
4043 fork_context_last
4044};
4045extern int __kmp_fork_call(ident_t *loc, int gtid,
4046 enum fork_context_e fork_context, kmp_int32 argc,
4047 microtask_t microtask, launch_t invoker,
4048 kmp_va_list ap);
4049
4050extern void __kmp_join_call(ident_t *loc, int gtid
4051#if OMPT_SUPPORT
4052 ,
4053 enum fork_context_e fork_context
4054#endif
4055 ,
4056 int exit_teams = 0);
4057
4058extern void __kmp_serialized_parallel(ident_t *id, kmp_int32 gtid);
4059extern void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team);
4060extern void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team);
4061extern int __kmp_invoke_task_func(int gtid);
4062extern void __kmp_run_before_invoked_task(int gtid, int tid,
4063 kmp_info_t *this_thr,
4064 kmp_team_t *team);
4065extern void __kmp_run_after_invoked_task(int gtid, int tid,
4066 kmp_info_t *this_thr,
4067 kmp_team_t *team);
4068
4069// should never have been exported
4070KMP_EXPORT int __kmpc_invoke_task_func(int gtid);
4071extern int __kmp_invoke_teams_master(int gtid);
4072extern void __kmp_teams_master(int gtid);
4073extern int __kmp_aux_get_team_num();
4074extern int __kmp_aux_get_num_teams();
4075extern void __kmp_save_internal_controls(kmp_info_t *thread);
4076extern void __kmp_user_set_library(enum library_type arg);
4077extern void __kmp_aux_set_library(enum library_type arg);
4078extern void __kmp_aux_set_stacksize(size_t arg);
4079extern void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid);
4080extern void __kmp_aux_set_defaults(char const *str, size_t len);
4081
4082/* Functions called from __kmp_aux_env_initialize() in kmp_settings.cpp */
4083void kmpc_set_blocktime(int arg);
4084void ompc_set_nested(int flag);
4085void ompc_set_dynamic(int flag);
4086void ompc_set_num_threads(int arg);
4087
4088extern void __kmp_push_current_task_to_thread(kmp_info_t *this_thr,
4089 kmp_team_t *team, int tid);
4090extern void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr);
4091extern kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
4092 kmp_tasking_flags_t *flags,
4093 size_t sizeof_kmp_task_t,
4094 size_t sizeof_shareds,
4095 kmp_routine_entry_t task_entry);
4096extern void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
4097 kmp_team_t *team, int tid,
4098 int set_curr_task);
4099extern void __kmp_finish_implicit_task(kmp_info_t *this_thr);
4100extern void __kmp_free_implicit_task(kmp_info_t *this_thr);
4101
4102extern kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
4103 int gtid,
4104 kmp_task_t *task);
4105extern void __kmp_fulfill_event(kmp_event_t *event);
4106
4107extern void __kmp_free_task_team(kmp_info_t *thread,
4108 kmp_task_team_t *task_team);
4109extern void __kmp_reap_task_teams(void);
4110extern void __kmp_wait_to_unref_task_teams(void);
4111extern void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team,
4112 int always);
4113extern void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team);
4114extern void __kmp_task_team_wait(kmp_info_t *this_thr, kmp_team_t *team
4115#if USE_ITT_BUILD
4116 ,
4117 void *itt_sync_obj
4118#endif /* USE_ITT_BUILD */
4119 ,
4120 int wait = 1);
4121extern void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread,
4122 int gtid);
4123
4124extern int __kmp_is_address_mapped(void *addr);
4125extern kmp_uint64 __kmp_hardware_timestamp(void);
4126
4127#if KMP_OS_UNIX
4128extern int __kmp_read_from_file(char const *path, char const *format, ...);
4129#endif
4130
4131/* ------------------------------------------------------------------------ */
4132//
4133// Assembly routines that have no compiler intrinsic replacement
4134//
4135
4136extern int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int npr, int argc,
4137 void *argv[]
4138#if OMPT_SUPPORT
4139 ,
4140 void **exit_frame_ptr
4141#endif
4142);
4143
4144/* ------------------------------------------------------------------------ */
4145
4146KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags);
4147KMP_EXPORT void __kmpc_end(ident_t *);
4148
4149KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data,
4150 kmpc_ctor_vec ctor,
4151 kmpc_cctor_vec cctor,
4152 kmpc_dtor_vec dtor,
4153 size_t vector_length);
4154KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data,
4155 kmpc_ctor ctor, kmpc_cctor cctor,
4156 kmpc_dtor dtor);
4157KMP_EXPORT void *__kmpc_threadprivate(ident_t *, kmp_int32 global_tid,
4158 void *data, size_t size);
4159
4160KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *);
4161KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *);
4162KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *);
4163KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *);
4164
4165KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *);
4166KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs,
4167 kmpc_micro microtask, ...);
4168KMP_EXPORT void __kmpc_fork_call_if(ident_t *loc, kmp_int32 nargs,
4169 kmpc_micro microtask, kmp_int32 cond,
4170 void *args);
4171
4172KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid);
4173KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid);
4174
4175KMP_EXPORT void __kmpc_flush(ident_t *);
4176KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid);
4177KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
4178KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
4179KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid,
4180 kmp_int32 filter);
4181KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid);
4182KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid);
4183KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid);
4184KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid,
4185 kmp_critical_name *);
4186KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid,
4187 kmp_critical_name *);
4188KMP_EXPORT void __kmpc_critical_with_hint(ident_t *, kmp_int32 global_tid,
4189 kmp_critical_name *, uint32_t hint);
4190
4191KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid);
4192KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid);
4193
4194KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *,
4195 kmp_int32 global_tid);
4196
4197KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
4198KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
4199
4200KMP_EXPORT kmp_int32 __kmpc_sections_init(ident_t *loc, kmp_int32 global_tid);
4201KMP_EXPORT kmp_int32 __kmpc_next_section(ident_t *loc, kmp_int32 global_tid,
4202 kmp_int32 numberOfSections);
4203KMP_EXPORT void __kmpc_end_sections(ident_t *loc, kmp_int32 global_tid);
4204
4205KMP_EXPORT void KMPC_FOR_STATIC_INIT(ident_t *loc, kmp_int32 global_tid,
4206 kmp_int32 schedtype, kmp_int32 *plastiter,
4207 kmp_int *plower, kmp_int *pupper,
4208 kmp_int *pstride, kmp_int incr,
4209 kmp_int chunk);
4210
4211KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
4212
4213KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
4214 size_t cpy_size, void *cpy_data,
4215 void (*cpy_func)(void *, void *),
4216 kmp_int32 didit);
4217
4218KMP_EXPORT void *__kmpc_copyprivate_light(ident_t *loc, kmp_int32 gtid,
4219 void *cpy_data);
4220
4221extern void KMPC_SET_NUM_THREADS(int arg);
4222extern void KMPC_SET_DYNAMIC(int flag);
4223extern void KMPC_SET_NESTED(int flag);
4224
4225/* OMP 3.0 tasking interface routines */
4226KMP_EXPORT kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
4227 kmp_task_t *new_task);
4228KMP_EXPORT kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
4229 kmp_int32 flags,
4230 size_t sizeof_kmp_task_t,
4231 size_t sizeof_shareds,
4232 kmp_routine_entry_t task_entry);
4233KMP_EXPORT kmp_task_t *__kmpc_omp_target_task_alloc(
4234 ident_t *loc_ref, kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t,
4235 size_t sizeof_shareds, kmp_routine_entry_t task_entry, kmp_int64 device_id);
4236KMP_EXPORT void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
4237 kmp_task_t *task);
4238KMP_EXPORT void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
4239 kmp_task_t *task);
4240KMP_EXPORT kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
4241 kmp_task_t *new_task);
4242KMP_EXPORT kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid);
4243KMP_EXPORT kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid,
4244 int end_part);
4245
4246#if TASK_UNUSED
4247void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task);
4248void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
4249 kmp_task_t *task);
4250#endif // TASK_UNUSED
4251
4252/* ------------------------------------------------------------------------ */
4253
4254KMP_EXPORT void __kmpc_taskgroup(ident_t *loc, int gtid);
4255KMP_EXPORT void __kmpc_end_taskgroup(ident_t *loc, int gtid);
4256
4257KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(
4258 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps,
4259 kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
4260 kmp_depend_info_t *noalias_dep_list);
4261
4262KMP_EXPORT kmp_base_depnode_t *__kmpc_task_get_depnode(kmp_task_t *task);
4263
4264KMP_EXPORT kmp_depnode_list_t *__kmpc_task_get_successors(kmp_task_t *task);
4265
4266KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid,
4267 kmp_int32 ndeps,
4268 kmp_depend_info_t *dep_list,
4269 kmp_int32 ndeps_noalias,
4270 kmp_depend_info_t *noalias_dep_list);
4271/* __kmpc_omp_taskwait_deps_51 : Function for OpenMP 5.1 nowait clause.
4272 * Placeholder for taskwait with nowait clause.*/
4273KMP_EXPORT void __kmpc_omp_taskwait_deps_51(ident_t *loc_ref, kmp_int32 gtid,
4274 kmp_int32 ndeps,
4275 kmp_depend_info_t *dep_list,
4276 kmp_int32 ndeps_noalias,
4277 kmp_depend_info_t *noalias_dep_list,
4278 kmp_int32 has_no_wait);
4279
4280extern kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
4281 bool serialize_immediate);
4282
4283KMP_EXPORT kmp_int32 __kmpc_cancel(ident_t *loc_ref, kmp_int32 gtid,
4284 kmp_int32 cncl_kind);
4285KMP_EXPORT kmp_int32 __kmpc_cancellationpoint(ident_t *loc_ref, kmp_int32 gtid,
4286 kmp_int32 cncl_kind);
4287KMP_EXPORT kmp_int32 __kmpc_cancel_barrier(ident_t *loc_ref, kmp_int32 gtid);
4288KMP_EXPORT int __kmp_get_cancellation_status(int cancel_kind);
4289
4290KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask);
4291KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask);
4292KMP_EXPORT void __kmpc_taskloop(ident_t *loc, kmp_int32 gtid, kmp_task_t *task,
4293 kmp_int32 if_val, kmp_uint64 *lb,
4294 kmp_uint64 *ub, kmp_int64 st, kmp_int32 nogroup,
4295 kmp_int32 sched, kmp_uint64 grainsize,
4296 void *task_dup);
4297KMP_EXPORT void __kmpc_taskloop_5(ident_t *loc, kmp_int32 gtid,
4298 kmp_task_t *task, kmp_int32 if_val,
4299 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4300 kmp_int32 nogroup, kmp_int32 sched,
4301 kmp_uint64 grainsize, kmp_int32 modifier,
4302 void *task_dup);
4303KMP_EXPORT void *__kmpc_task_reduction_init(int gtid, int num_data, void *data);
4304KMP_EXPORT void *__kmpc_taskred_init(int gtid, int num_data, void *data);
4305KMP_EXPORT void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d);
4306KMP_EXPORT void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid,
4307 int is_ws, int num,
4308 void *data);
4309KMP_EXPORT void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws,
4310 int num, void *data);
4311KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid,
4312 int is_ws);
4313KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(
4314 ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins,
4315 kmp_task_affinity_info_t *affin_list);
4316KMP_EXPORT void __kmp_set_num_teams(int num_teams);
4317KMP_EXPORT int __kmp_get_max_teams(void);
4318KMP_EXPORT void __kmp_set_teams_thread_limit(int limit);
4319KMP_EXPORT int __kmp_get_teams_thread_limit(void);
4320
4321/* Interface target task integration */
4322KMP_EXPORT void **__kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid);
4323KMP_EXPORT bool __kmpc_omp_has_task_team(kmp_int32 gtid);
4324
4325/* Lock interface routines (fast versions with gtid passed in) */
4326KMP_EXPORT void __kmpc_init_lock(ident_t *loc, kmp_int32 gtid,
4327 void **user_lock);
4328KMP_EXPORT void __kmpc_init_nest_lock(ident_t *loc, kmp_int32 gtid,
4329 void **user_lock);
4330KMP_EXPORT void __kmpc_destroy_lock(ident_t *loc, kmp_int32 gtid,
4331 void **user_lock);
4332KMP_EXPORT void __kmpc_destroy_nest_lock(ident_t *loc, kmp_int32 gtid,
4333 void **user_lock);
4334KMP_EXPORT void __kmpc_set_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
4335KMP_EXPORT void __kmpc_set_nest_lock(ident_t *loc, kmp_int32 gtid,
4336 void **user_lock);
4337KMP_EXPORT void __kmpc_unset_lock(ident_t *loc, kmp_int32 gtid,
4338 void **user_lock);
4339KMP_EXPORT void __kmpc_unset_nest_lock(ident_t *loc, kmp_int32 gtid,
4340 void **user_lock);
4341KMP_EXPORT int __kmpc_test_lock(ident_t *loc, kmp_int32 gtid, void **user_lock);
4342KMP_EXPORT int __kmpc_test_nest_lock(ident_t *loc, kmp_int32 gtid,
4343 void **user_lock);
4344
4345KMP_EXPORT void __kmpc_init_lock_with_hint(ident_t *loc, kmp_int32 gtid,
4346 void **user_lock, uintptr_t hint);
4347KMP_EXPORT void __kmpc_init_nest_lock_with_hint(ident_t *loc, kmp_int32 gtid,
4348 void **user_lock,
4349 uintptr_t hint);
4350
4351#if OMPX_TASKGRAPH
4352// Taskgraph's Record & Replay mechanism
4353// __kmp_tdg_is_recording: check whether a given TDG is recording
4354// status: the tdg's current status
4355static inline bool __kmp_tdg_is_recording(kmp_tdg_status_t status) {
4356 return status == KMP_TDG_RECORDING;
4357}
4358
4359KMP_EXPORT kmp_int32 __kmpc_start_record_task(ident_t *loc, kmp_int32 gtid,
4360 kmp_int32 input_flags,
4361 kmp_int32 tdg_id);
4362KMP_EXPORT void __kmpc_end_record_task(ident_t *loc, kmp_int32 gtid,
4363 kmp_int32 input_flags, kmp_int32 tdg_id);
4364#endif
4365/* Interface to fast scalable reduce methods routines */
4366
4367KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(
4368 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4369 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4370 kmp_critical_name *lck);
4371KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
4372 kmp_critical_name *lck);
4373KMP_EXPORT kmp_int32 __kmpc_reduce(
4374 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4375 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4376 kmp_critical_name *lck);
4377KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
4378 kmp_critical_name *lck);
4379
4380/* Internal fast reduction routines */
4381
4382extern PACKED_REDUCTION_METHOD_T __kmp_determine_reduction_method(
4383 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
4384 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
4385 kmp_critical_name *lck);
4386
4387// this function is for testing set/get/determine reduce method
4388KMP_EXPORT kmp_int32 __kmp_get_reduce_method(void);
4389
4390KMP_EXPORT kmp_uint64 __kmpc_get_taskid();
4391KMP_EXPORT kmp_uint64 __kmpc_get_parent_taskid();
4392
4393// C++ port
4394// missing 'extern "C"' declarations
4395
4396KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc);
4397KMP_EXPORT void __kmpc_pop_num_threads(ident_t *loc, kmp_int32 global_tid);
4398KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
4399 kmp_int32 num_threads);
4400
4401KMP_EXPORT void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
4402 int proc_bind);
4403KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
4404 kmp_int32 num_teams,
4405 kmp_int32 num_threads);
4406KMP_EXPORT void __kmpc_set_thread_limit(ident_t *loc, kmp_int32 global_tid,
4407 kmp_int32 thread_limit);
4408/* Function for OpenMP 5.1 num_teams clause */
4409KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid,
4410 kmp_int32 num_teams_lb,
4411 kmp_int32 num_teams_ub,
4412 kmp_int32 num_threads);
4413KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc,
4414 kmpc_micro microtask, ...);
4415struct kmp_dim { // loop bounds info casted to kmp_int64
4416 kmp_int64 lo; // lower
4417 kmp_int64 up; // upper
4418 kmp_int64 st; // stride
4419};
4420KMP_EXPORT void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
4421 kmp_int32 num_dims,
4422 const struct kmp_dim *dims);
4423KMP_EXPORT void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid,
4424 const kmp_int64 *vec);
4425KMP_EXPORT void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid,
4426 const kmp_int64 *vec);
4427KMP_EXPORT void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
4428
4429KMP_EXPORT void *__kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid,
4430 void *data, size_t size,
4431 void ***cache);
4432
4433// The routines below are not exported.
4434// Consider making them 'static' in corresponding source files.
4435void kmp_threadprivate_insert_private_data(int gtid, void *pc_addr,
4436 void *data_addr, size_t pc_size);
4437struct private_common *kmp_threadprivate_insert(int gtid, void *pc_addr,
4438 void *data_addr,
4439 size_t pc_size);
4440void __kmp_threadprivate_resize_cache(int newCapacity);
4441void __kmp_cleanup_threadprivate_caches();
4442
4443// ompc_, kmpc_ entries moved from omp.h.
4444#if KMP_OS_WINDOWS
4445#define KMPC_CONVENTION __cdecl
4446#else
4447#define KMPC_CONVENTION
4448#endif
4449
4450#ifndef __OMP_H
4451typedef enum omp_sched_t {
4452 omp_sched_static = 1,
4453 omp_sched_dynamic = 2,
4454 omp_sched_guided = 3,
4455 omp_sched_auto = 4
4456} omp_sched_t;
4457typedef void *kmp_affinity_mask_t;
4458#endif
4459
4460KMP_EXPORT void KMPC_CONVENTION ompc_set_max_active_levels(int);
4461KMP_EXPORT void KMPC_CONVENTION ompc_set_schedule(omp_sched_t, int);
4462KMP_EXPORT int KMPC_CONVENTION ompc_get_ancestor_thread_num(int);
4463KMP_EXPORT int KMPC_CONVENTION ompc_get_team_size(int);
4464KMP_EXPORT int KMPC_CONVENTION
4465kmpc_set_affinity_mask_proc(int, kmp_affinity_mask_t *);
4466KMP_EXPORT int KMPC_CONVENTION
4467kmpc_unset_affinity_mask_proc(int, kmp_affinity_mask_t *);
4468KMP_EXPORT int KMPC_CONVENTION
4469kmpc_get_affinity_mask_proc(int, kmp_affinity_mask_t *);
4470
4471KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize(int);
4472KMP_EXPORT void KMPC_CONVENTION kmpc_set_stacksize_s(size_t);
4473KMP_EXPORT void KMPC_CONVENTION kmpc_set_library(int);
4474KMP_EXPORT void KMPC_CONVENTION kmpc_set_defaults(char const *);
4475KMP_EXPORT void KMPC_CONVENTION kmpc_set_disp_num_buffers(int);
4476void KMP_EXPAND_NAME(ompc_set_affinity_format)(char const *format);
4477size_t KMP_EXPAND_NAME(ompc_get_affinity_format)(char *buffer, size_t size);
4478void KMP_EXPAND_NAME(ompc_display_affinity)(char const *format);
4479size_t KMP_EXPAND_NAME(ompc_capture_affinity)(char *buffer, size_t buf_size,
4480 char const *format);
4481
4482enum kmp_target_offload_kind {
4483 tgt_disabled = 0,
4484 tgt_default = 1,
4485 tgt_mandatory = 2
4486};
4487typedef enum kmp_target_offload_kind kmp_target_offload_kind_t;
4488// Set via OMP_TARGET_OFFLOAD if specified, defaults to tgt_default otherwise
4489extern kmp_target_offload_kind_t __kmp_target_offload;
4490extern int __kmpc_get_target_offload();
4491
4492// Constants used in libomptarget
4493#define KMP_DEVICE_DEFAULT -1 // This is libomptarget's default device.
4494#define KMP_DEVICE_ALL -11 // This is libomptarget's "all devices".
4495
4496// OMP Pause Resource
4497
4498// The following enum is used both to set the status in __kmp_pause_status, and
4499// as the internal equivalent of the externally-visible omp_pause_resource_t.
4500typedef enum kmp_pause_status_t {
4501 kmp_not_paused = 0, // status is not paused, or, requesting resume
4502 kmp_soft_paused = 1, // status is soft-paused, or, requesting soft pause
4503 kmp_hard_paused = 2 // status is hard-paused, or, requesting hard pause
4504} kmp_pause_status_t;
4505
4506// This stores the pause state of the runtime
4507extern kmp_pause_status_t __kmp_pause_status;
4508extern int __kmpc_pause_resource(kmp_pause_status_t level);
4509extern int __kmp_pause_resource(kmp_pause_status_t level);
4510// Soft resume sets __kmp_pause_status, and wakes up all threads.
4511extern void __kmp_resume_if_soft_paused();
4512// Hard resume simply resets the status to not paused. Library will appear to
4513// be uninitialized after hard pause. Let OMP constructs trigger required
4514// initializations.
4515static inline void __kmp_resume_if_hard_paused() {
4516 if (__kmp_pause_status == kmp_hard_paused) {
4517 __kmp_pause_status = kmp_not_paused;
4518 }
4519}
4520
4521extern void __kmp_omp_display_env(int verbose);
4522
4523// 1: it is initializing hidden helper team
4524extern volatile int __kmp_init_hidden_helper;
4525// 1: the hidden helper team is done
4526extern volatile int __kmp_hidden_helper_team_done;
4527// 1: enable hidden helper task
4528extern kmp_int32 __kmp_enable_hidden_helper;
4529// Main thread of hidden helper team
4530extern kmp_info_t *__kmp_hidden_helper_main_thread;
4531// Descriptors for the hidden helper threads
4532extern kmp_info_t **__kmp_hidden_helper_threads;
4533// Number of hidden helper threads
4534extern kmp_int32 __kmp_hidden_helper_threads_num;
4535// Number of hidden helper tasks that have not been executed yet
4536extern std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks;
4537
4538extern void __kmp_hidden_helper_initialize();
4539extern void __kmp_hidden_helper_threads_initz_routine();
4540extern void __kmp_do_initialize_hidden_helper_threads();
4541extern void __kmp_hidden_helper_threads_initz_wait();
4542extern void __kmp_hidden_helper_initz_release();
4543extern void __kmp_hidden_helper_threads_deinitz_wait();
4544extern void __kmp_hidden_helper_threads_deinitz_release();
4545extern void __kmp_hidden_helper_main_thread_wait();
4546extern void __kmp_hidden_helper_worker_thread_wait();
4547extern void __kmp_hidden_helper_worker_thread_signal();
4548extern void __kmp_hidden_helper_main_thread_release();
4549
4550// Check whether a given thread is a hidden helper thread
4551#define KMP_HIDDEN_HELPER_THREAD(gtid) \
4552 ((gtid) >= 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4553
4554#define KMP_HIDDEN_HELPER_WORKER_THREAD(gtid) \
4555 ((gtid) > 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4556
4557#define KMP_HIDDEN_HELPER_MAIN_THREAD(gtid) \
4558 ((gtid) == 1 && (gtid) <= __kmp_hidden_helper_threads_num)
4559
4560#define KMP_HIDDEN_HELPER_TEAM(team) \
4561 (team->t.t_threads[0] == __kmp_hidden_helper_main_thread)
4562
4563// Map a gtid to a hidden helper thread. The first hidden helper thread, a.k.a
4564// main thread, is skipped.
4565#define KMP_GTID_TO_SHADOW_GTID(gtid) \
4566 ((gtid) % (__kmp_hidden_helper_threads_num - 1) + 2)
4567
4568// Return the adjusted gtid value by subtracting from gtid the number
4569// of hidden helper threads. This adjusted value is the gtid the thread would
4570// have received if there were no hidden helper threads.
4571static inline int __kmp_adjust_gtid_for_hidden_helpers(int gtid) {
4572 int adjusted_gtid = gtid;
4573 if (__kmp_hidden_helper_threads_num > 0 && gtid > 0 &&
4574 gtid - __kmp_hidden_helper_threads_num >= 0) {
4575 adjusted_gtid -= __kmp_hidden_helper_threads_num;
4576 }
4577 return adjusted_gtid;
4578}
4579
4580// Support for error directive
4581typedef enum kmp_severity_t {
4582 severity_warning = 1,
4583 severity_fatal = 2
4584} kmp_severity_t;
4585extern void __kmpc_error(ident_t *loc, int severity, const char *message);
4586
4587// Support for scope directive
4588KMP_EXPORT void __kmpc_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4589KMP_EXPORT void __kmpc_end_scope(ident_t *loc, kmp_int32 gtid, void *reserved);
4590
4591#ifdef __cplusplus
4592}
4593#endif
4594
4595template <bool C, bool S>
4596extern void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag);
4597template <bool C, bool S>
4598extern void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag);
4599template <bool C, bool S>
4600extern void __kmp_atomic_suspend_64(int th_gtid,
4601 kmp_atomic_flag_64<C, S> *flag);
4602extern void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag);
4603#if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
4604template <bool C, bool S>
4605extern void __kmp_mwait_32(int th_gtid, kmp_flag_32<C, S> *flag);
4606template <bool C, bool S>
4607extern void __kmp_mwait_64(int th_gtid, kmp_flag_64<C, S> *flag);
4608template <bool C, bool S>
4609extern void __kmp_atomic_mwait_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag);
4610extern void __kmp_mwait_oncore(int th_gtid, kmp_flag_oncore *flag);
4611#endif
4612template <bool C, bool S>
4613extern void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag);
4614template <bool C, bool S>
4615extern void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag);
4616template <bool C, bool S>
4617extern void __kmp_atomic_resume_64(int target_gtid,
4618 kmp_atomic_flag_64<C, S> *flag);
4619extern void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag);
4620
4621template <bool C, bool S>
4622int __kmp_execute_tasks_32(kmp_info_t *thread, kmp_int32 gtid,
4623 kmp_flag_32<C, S> *flag, int final_spin,
4624 int *thread_finished,
4625#if USE_ITT_BUILD
4626 void *itt_sync_obj,
4627#endif /* USE_ITT_BUILD */
4628 kmp_int32 is_constrained);
4629template <bool C, bool S>
4630int __kmp_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4631 kmp_flag_64<C, S> *flag, int final_spin,
4632 int *thread_finished,
4633#if USE_ITT_BUILD
4634 void *itt_sync_obj,
4635#endif /* USE_ITT_BUILD */
4636 kmp_int32 is_constrained);
4637template <bool C, bool S>
4638int __kmp_atomic_execute_tasks_64(kmp_info_t *thread, kmp_int32 gtid,
4639 kmp_atomic_flag_64<C, S> *flag,
4640 int final_spin, int *thread_finished,
4641#if USE_ITT_BUILD
4642 void *itt_sync_obj,
4643#endif /* USE_ITT_BUILD */
4644 kmp_int32 is_constrained);
4645int __kmp_execute_tasks_oncore(kmp_info_t *thread, kmp_int32 gtid,
4646 kmp_flag_oncore *flag, int final_spin,
4647 int *thread_finished,
4648#if USE_ITT_BUILD
4649 void *itt_sync_obj,
4650#endif /* USE_ITT_BUILD */
4651 kmp_int32 is_constrained);
4652
4653extern int __kmp_nesting_mode;
4654extern int __kmp_nesting_mode_nlevels;
4655extern int *__kmp_nesting_nth_level;
4656extern void __kmp_init_nesting_mode();
4657extern void __kmp_set_nesting_mode_threads();
4658
4666 FILE *f;
4667
4668 void close() {
4669 if (f && f != stdout && f != stderr) {
4670 fclose(f);
4671 f = nullptr;
4672 }
4673 }
4674
4675public:
4676 kmp_safe_raii_file_t() : f(nullptr) {}
4677 kmp_safe_raii_file_t(const char *filename, const char *mode,
4678 const char *env_var = nullptr)
4679 : f(nullptr) {
4680 open(filename, mode, env_var);
4681 }
4682 ~kmp_safe_raii_file_t() { close(); }
4683
4687 void open(const char *filename, const char *mode,
4688 const char *env_var = nullptr) {
4689 KMP_ASSERT(!f);
4690 f = fopen(filename, mode);
4691 if (!f) {
4692 int code = errno;
4693 if (env_var) {
4694 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4695 KMP_HNT(CheckEnvVar, env_var, filename), __kmp_msg_null);
4696 } else {
4697 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4698 __kmp_msg_null);
4699 }
4700 }
4701 }
4704 int try_open(const char *filename, const char *mode) {
4705 KMP_ASSERT(!f);
4706 f = fopen(filename, mode);
4707 if (!f)
4708 return errno;
4709 return 0;
4710 }
4713 void set_stdout() {
4714 KMP_ASSERT(!f);
4715 f = stdout;
4716 }
4719 void set_stderr() {
4720 KMP_ASSERT(!f);
4721 f = stderr;
4722 }
4723 operator bool() { return bool(f); }
4724 operator FILE *() { return f; }
4725};
4726
4727template <typename SourceType, typename TargetType,
4728 bool isSourceSmaller = (sizeof(SourceType) < sizeof(TargetType)),
4729 bool isSourceEqual = (sizeof(SourceType) == sizeof(TargetType)),
4730 bool isSourceSigned = std::is_signed<SourceType>::value,
4731 bool isTargetSigned = std::is_signed<TargetType>::value>
4732struct kmp_convert {};
4733
4734// Both types are signed; Source smaller
4735template <typename SourceType, typename TargetType>
4736struct kmp_convert<SourceType, TargetType, true, false, true, true> {
4737 static TargetType to(SourceType src) { return (TargetType)src; }
4738};
4739// Source equal
4740template <typename SourceType, typename TargetType>
4741struct kmp_convert<SourceType, TargetType, false, true, true, true> {
4742 static TargetType to(SourceType src) { return src; }
4743};
4744// Source bigger
4745template <typename SourceType, typename TargetType>
4746struct kmp_convert<SourceType, TargetType, false, false, true, true> {
4747 static TargetType to(SourceType src) {
4748 KMP_ASSERT(src <= static_cast<SourceType>(
4749 (std::numeric_limits<TargetType>::max)()));
4750 KMP_ASSERT(src >= static_cast<SourceType>(
4751 (std::numeric_limits<TargetType>::min)()));
4752 return (TargetType)src;
4753 }
4754};
4755
4756// Source signed, Target unsigned
4757// Source smaller
4758template <typename SourceType, typename TargetType>
4759struct kmp_convert<SourceType, TargetType, true, false, true, false> {
4760 static TargetType to(SourceType src) {
4761 KMP_ASSERT(src >= 0);
4762 return (TargetType)src;
4763 }
4764};
4765// Source equal
4766template <typename SourceType, typename TargetType>
4767struct kmp_convert<SourceType, TargetType, false, true, true, false> {
4768 static TargetType to(SourceType src) {
4769 KMP_ASSERT(src >= 0);
4770 return (TargetType)src;
4771 }
4772};
4773// Source bigger
4774template <typename SourceType, typename TargetType>
4775struct kmp_convert<SourceType, TargetType, false, false, true, false> {
4776 static TargetType to(SourceType src) {
4777 KMP_ASSERT(src >= 0);
4778 KMP_ASSERT(src <= static_cast<SourceType>(
4779 (std::numeric_limits<TargetType>::max)()));
4780 return (TargetType)src;
4781 }
4782};
4783
4784// Source unsigned, Target signed
4785// Source smaller
4786template <typename SourceType, typename TargetType>
4787struct kmp_convert<SourceType, TargetType, true, false, false, true> {
4788 static TargetType to(SourceType src) { return (TargetType)src; }
4789};
4790// Source equal
4791template <typename SourceType, typename TargetType>
4792struct kmp_convert<SourceType, TargetType, false, true, false, true> {
4793 static TargetType to(SourceType src) {
4794 KMP_ASSERT(src <= static_cast<SourceType>(
4795 (std::numeric_limits<TargetType>::max)()));
4796 return (TargetType)src;
4797 }
4798};
4799// Source bigger
4800template <typename SourceType, typename TargetType>
4801struct kmp_convert<SourceType, TargetType, false, false, false, true> {
4802 static TargetType to(SourceType src) {
4803 KMP_ASSERT(src <= static_cast<SourceType>(
4804 (std::numeric_limits<TargetType>::max)()));
4805 return (TargetType)src;
4806 }
4807};
4808
4809// Source unsigned, Target unsigned
4810// Source smaller
4811template <typename SourceType, typename TargetType>
4812struct kmp_convert<SourceType, TargetType, true, false, false, false> {
4813 static TargetType to(SourceType src) { return (TargetType)src; }
4814};
4815// Source equal
4816template <typename SourceType, typename TargetType>
4817struct kmp_convert<SourceType, TargetType, false, true, false, false> {
4818 static TargetType to(SourceType src) { return src; }
4819};
4820// Source bigger
4821template <typename SourceType, typename TargetType>
4822struct kmp_convert<SourceType, TargetType, false, false, false, false> {
4823 static TargetType to(SourceType src) {
4824 KMP_ASSERT(src <= static_cast<SourceType>(
4825 (std::numeric_limits<TargetType>::max)()));
4826 return (TargetType)src;
4827 }
4828};
4829
4830template <typename T1, typename T2>
4831static inline void __kmp_type_convert(T1 src, T2 *dest) {
4832 *dest = kmp_convert<T1, T2>::to(src);
4833}
4834
4835#endif /* KMP_H */
void set_stdout()
Definition kmp.h:4713
void set_stderr()
Definition kmp.h:4719
int try_open(const char *filename, const char *mode)
Definition kmp.h:4704
void open(const char *filename, const char *mode, const char *env_var=nullptr)
Definition kmp.h:4687
struct ident ident_t
@ KMP_IDENT_KMPC
Definition kmp.h:208
@ KMP_IDENT_IMB
Definition kmp.h:206
@ KMP_IDENT_WORK_LOOP
Definition kmp.h:226
@ KMP_IDENT_BARRIER_IMPL
Definition kmp.h:217
@ KMP_IDENT_WORK_SECTIONS
Definition kmp.h:228
@ KMP_IDENT_AUTOPAR
Definition kmp.h:211
@ KMP_IDENT_ATOMIC_HINT_MASK
Definition kmp.h:235
@ KMP_IDENT_WORK_DISTRIBUTE
Definition kmp.h:230
@ KMP_IDENT_BARRIER_EXPL
Definition kmp.h:215
@ KMP_IDENT_ATOMIC_REDUCE
Definition kmp.h:213
KMP_EXPORT kmp_int32 __kmpc_ok_to_fork(ident_t *)
KMP_EXPORT void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro microtask,...)
KMP_EXPORT void __kmpc_fork_call_if(ident_t *loc, kmp_int32 nargs, kmpc_micro microtask, kmp_int32 cond, void *args)
KMP_EXPORT void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_set_thread_limit(ident_t *loc, kmp_int32 global_tid, kmp_int32 thread_limit)
KMP_EXPORT void __kmpc_serialized_parallel(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_fork_call(ident_t *, kmp_int32 nargs, kmpc_micro microtask,...)
KMP_EXPORT void __kmpc_end_serialized_parallel(ident_t *, kmp_int32 global_tid)
void(* kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
Definition kmp.h:1738
KMP_EXPORT void __kmpc_push_num_teams_51(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_teams_lb, kmp_int32 num_teams_ub, kmp_int32 num_threads)
KMP_EXPORT void __kmpc_begin(ident_t *, kmp_int32 flags)
KMP_EXPORT void __kmpc_end(ident_t *)
KMP_EXPORT void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
KMP_EXPORT void __kmpc_end_barrier_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_barrier_master_nowait(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_critical_name *lck)
KMP_EXPORT kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
KMP_EXPORT void __kmpc_barrier(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_flush(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_barrier_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void(*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck)
KMP_EXPORT void * __kmpc_task_reduction_get_th_data(int gtid, void *tg, void *d)
KMP_EXPORT void * __kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
KMP_EXPORT void * __kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num, void *data)
KMP_EXPORT bool __kmpc_omp_has_task_team(kmp_int32 gtid)
KMP_EXPORT void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask)
KMP_EXPORT void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws)
KMP_EXPORT kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
KMP_EXPORT kmp_int32 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *new_task, kmp_int32 naffins, kmp_task_affinity_info_t *affin_list)
KMP_EXPORT void * __kmpc_task_reduction_init(int gtid, int num_data, void *data)
KMP_EXPORT void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask)
KMP_EXPORT void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list)
KMP_EXPORT void * __kmpc_taskred_init(int gtid, int num_data, void *data)
KMP_EXPORT void ** __kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid)
void(* kmpc_dtor)(void *)
Definition kmp.h:1762
void *(* kmpc_cctor)(void *, void *)
Definition kmp.h:1769
KMP_EXPORT void __kmpc_threadprivate_register(ident_t *, void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor)
KMP_EXPORT void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *), kmp_int32 didit)
void *(* kmpc_cctor_vec)(void *, void *, size_t)
Definition kmp.h:1791
void *(* kmpc_ctor)(void *)
Definition kmp.h:1756
KMP_EXPORT void * __kmpc_copyprivate_light(ident_t *loc, kmp_int32 gtid, void *cpy_data)
void *(* kmpc_ctor_vec)(void *, size_t)
Definition kmp.h:1779
KMP_EXPORT void * __kmpc_threadprivate_cached(ident_t *loc, kmp_int32 global_tid, void *data, size_t size, void ***cache)
void(* kmpc_dtor_vec)(void *, size_t)
Definition kmp.h:1785
KMP_EXPORT void __kmpc_threadprivate_register_vec(ident_t *, void *data, kmpc_ctor_vec ctor, kmpc_cctor_vec cctor, kmpc_dtor_vec dtor, size_t vector_length)
KMP_EXPORT kmp_int32 __kmpc_global_num_threads(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_global_thread_num(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_in_parallel(ident_t *loc)
KMP_EXPORT kmp_int32 __kmpc_bound_thread_num(ident_t *)
KMP_EXPORT kmp_int32 __kmpc_bound_num_threads(ident_t *)
KMP_EXPORT void __kmpc_end_ordered(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
KMP_EXPORT void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid)
sched_type
Definition kmp.h:369
KMP_EXPORT void __kmpc_end_masked(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_next_section(ident_t *loc, kmp_int32 global_tid, kmp_int32 numberOfSections)
KMP_EXPORT void __kmpc_end_master(ident_t *, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_sections(ident_t *loc, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_end_single(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_sections_init(ident_t *loc, kmp_int32 global_tid)
KMP_EXPORT void __kmpc_ordered(ident_t *, kmp_int32 global_tid)
KMP_EXPORT kmp_int32 __kmpc_masked(ident_t *, kmp_int32 global_tid, kmp_int32 filter)
void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid, enum sched_type schedule, kmp_int32 lb, kmp_int32 ub, kmp_int32 st, kmp_int32 chunk)
KMP_EXPORT void __kmpc_critical(ident_t *, kmp_int32 global_tid, kmp_critical_name *)
@ kmp_nm_guided_chunked
Definition kmp.h:420
@ kmp_sch_runtime_simd
Definition kmp.h:391
@ kmp_nm_ord_auto
Definition kmp.h:439
@ kmp_sch_auto
Definition kmp.h:376
@ kmp_nm_auto
Definition kmp.h:422
@ kmp_distribute_static_chunked
Definition kmp.h:407
@ kmp_sch_static
Definition kmp.h:372
@ kmp_sch_guided_simd
Definition kmp.h:390
@ kmp_sch_modifier_monotonic
Definition kmp.h:457
@ kmp_sch_default
Definition kmp.h:477
@ kmp_sch_modifier_nonmonotonic
Definition kmp.h:459
@ kmp_nm_ord_static
Definition kmp.h:435
@ kmp_distribute_static
Definition kmp.h:408
@ kmp_sch_guided_chunked
Definition kmp.h:374
@ kmp_nm_static
Definition kmp.h:418
@ kmp_sch_lower
Definition kmp.h:370
@ kmp_nm_upper
Definition kmp.h:441
@ kmp_ord_lower
Definition kmp.h:396
@ kmp_ord_static
Definition kmp.h:398
@ kmp_sch_upper
Definition kmp.h:394
@ kmp_ord_upper
Definition kmp.h:404
@ kmp_nm_lower
Definition kmp.h:414
@ kmp_ord_auto
Definition kmp.h:402
Definition kmp.h:246
kmp_int32 reserved_1
Definition kmp.h:247
char const * psource
Definition kmp.h:256
kmp_int32 reserved_2
Definition kmp.h:250
kmp_int32 reserved_3
Definition kmp.h:255
kmp_int32 flags
Definition kmp.h:248